Suppr超能文献

基于纳米压痕与压汞法联用的硬化水泥浆体物相鉴定

On Phase Identification of Hardened Cement Pastes by Combined Nanoindentation and Mercury Intrusion Method.

作者信息

Ying Jingwei, Zhang Xiangxin, Jiang Zhijun, Huang Yijie

机构信息

School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China.

Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China.

出版信息

Materials (Basel). 2021 Jun 17;14(12):3349. doi: 10.3390/ma14123349.

Abstract

The micro-mechanical properties of hardened cement paste can be obtained by nanoindentation. Phases at different locations can generally be determined by using the Gaussian mixture model (GMM) method and the K-means clustering (KM) method. However, there are differences between analysis methods. In this study, pore structure and porosity of hardened cement paste aged three, seven, and 28 days were obtained by mercury intrusion porosimetry (MIP), and their micro-mechanical properties were obtained by the nanoindentation method. A new method, GMM-MIP and KM-MIP, was proposed to determine the phase of hardened cement paste based on the pore structure and nanoindentation results. The results show that GMM-MIP and KM-MIP methods are more reasonable than GMM and KM methods in determining the phase of hardened cement paste. GMM-MIP can be used to obtain reasonable phase distribution. If the micro-mechanical properties of each phase in hardened cement paste do not satisfy the normal distribution, the GMM method has significant defects.

摘要

硬化水泥浆体的微观力学性能可通过纳米压痕法获得。不同位置的相通常可通过使用高斯混合模型(GMM)法和K均值聚类(KM)法来确定。然而,分析方法之间存在差异。在本研究中,通过压汞法(MIP)获得了养护3天、7天和28天的硬化水泥浆体的孔隙结构和孔隙率,并通过纳米压痕法获得了它们的微观力学性能。提出了一种基于孔隙结构和纳米压痕结果确定硬化水泥浆体相的新方法,即GMM-MIP和KM-MIP。结果表明,GMM-MIP和KM-MIP方法在确定硬化水泥浆体相方面比GMM和KM方法更合理。GMM-MIP可用于获得合理的相分布。如果硬化水泥浆体中各相的微观力学性能不满足正态分布,GMM方法存在显著缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff59/8235757/121820776ec5/materials-14-03349-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验