Zekri Mohamed, Herrmann Andreas, Erlebach Andreas, Damak Kamel, Rüssel Christian, Sierka Marek, Maâlej Ramzi
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia.
Institute of Materials Science and Engineering, Ilmenau University of Technology, 98693 Ilmenau, Germany.
Materials (Basel). 2021 Jun 12;14(12):3265. doi: 10.3390/ma14123265.
Understanding the atomic structure of glasses is critical for developing new generations of materials with important technical applications. In particular, the local environment of rare-earth ions and their distribution and clustering is of great relevance for applications of rare earth-containing glasses in photonic devices. In this work, the structure of GdO doped lithium and potassium aluminosilicate glasses is investigated as a function of their network modifier oxide (NMO-LiO, KO) to aluminum oxide ratio using molecular dynamics simulations. The applied simulation procedure yields a set of configurations, the so-called inherent structures, of the liquid state slightly above the glass transition temperature. The generation of a large set of inherent structures allows a statistical sampling of the medium-range order of the Gd ions with less computational effort compared to other simulation methods. The resulting medium-range atomic structures of network former and modifier ions are in good agreement with experimental results and simulations of similar glasses. It was found that increasing NMO/Al ratio increases the network modifier coordination number with non-bridging oxygen sites and reduces the overall stability of the network structure. The fraction of non-bridging oxygen sites in the vicinity of Gd ions increases considerably with decreasing field strength and increasing concentration of the network modifier ions. These correlations could be confirmed even if the simulation results of alkaline earth aluminosilicate glasses are added to the analysis. In addition, the structure predictions generally indicate a low driving force for the clustering of Gd. Here, network modifier ions of large ionic radii reduce the probability of Gd-O-Gd contacts.
了解玻璃的原子结构对于开发具有重要技术应用的新一代材料至关重要。特别是,稀土离子的局部环境及其分布和聚集对于含稀土玻璃在光子器件中的应用具有重要意义。在这项工作中,使用分子动力学模拟研究了GdO掺杂的锂铝硅酸盐玻璃和钾铝硅酸盐玻璃的结构,该结构是其网络改性剂氧化物(NMO-LiO、KO)与氧化铝比例的函数。所应用的模拟程序产生了一组构型,即所谓的固有结构,其处于略高于玻璃化转变温度的液态。与其他模拟方法相比,生成大量固有结构能够以较少的计算量对Gd离子的中程有序进行统计采样。网络形成离子和改性剂离子的中程原子结构结果与类似玻璃的实验结果和模拟结果吻合良好。研究发现,增加NMO/Al比例会增加网络改性剂与非桥氧位点的配位数,并降低网络结构的整体稳定性。随着场强降低和网络改性剂离子浓度增加,Gd离子附近非桥氧位点的比例显著增加。即使将碱土铝硅酸盐玻璃的模拟结果添加到分析中,这些相关性也能得到证实。此外,结构预测通常表明Gd聚集的驱动力较低。在这里,大离子半径的网络改性剂离子降低了Gd-O-Gd接触的概率。