Suppr超能文献

迈向机器视觉系统的语义集成,以辅助制造事件的理解。

Towards Semantic Integration of Machine Vision Systems to Aid Manufacturing Event Understanding.

机构信息

McNAIR Center for Aerospace Innovation and Research, Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina, 1000 Catawba Street, Columbia, SC 29201, USA.

Siemens Digital Industries Software, Charlotte, NC 28277, USA.

出版信息

Sensors (Basel). 2021 Jun 22;21(13):4276. doi: 10.3390/s21134276.

Abstract

A manufacturing paradigm shift from conventional control pyramids to decentralized, service-oriented, and cyber-physical systems (CPSs) is taking place in today's 4th industrial revolution. Generally accepted roles and implementation recipes of cyber systems are expected to be standardized in the future of manufacturing industry. The authors intend to develop a novel CPS-enabled control architecture that accommodates: (1) intelligent information systems involving domain knowledge, empirical model, and simulation; (2) fast and secured industrial communication networks; (3) cognitive automation by rapid signal analytics and machine learning (ML) based feature extraction; (4) interoperability between machine and human. Semantic integration of process indicators is fundamental to the success of such implementation. This work proposes an automated semantic integration of data-intensive process signals that is deployable to industrial signal-based control loops. The proposed system rapidly infers manufacturing events from image-based data feeds, and hence triggers process control signals. Two image inference approaches are implemented: cloud-based ML model query and edge-end object shape detection. Depending on use cases and task requirements, these two approaches can be designated with different event detection tasks to provide a comprehensive system self-awareness. Coupled with conventional industrial sensor signals, machine vision system can rapidly understand manufacturing scenes, and feed extracted semantic information to a manufacturing ontology developed by either expert or ML-enabled cyber systems. Moreover, extracted signals are interpreted by Programmable Logical Controllers (PLCs) and field devices for cognitive automation towards fully autonomous industrial systems.

摘要

在当今的第四次工业革命中,制造业正从传统的控制金字塔模式向分散式、面向服务和网络物理系统(CPS)转变。未来的制造业有望标准化普遍接受的网络系统角色和实施方法。作者旨在开发一种新型的 CPS 控制架构,该架构可容纳:(1)涉及领域知识、经验模型和模拟的智能信息系统;(2)快速和安全的工业通信网络;(3)通过快速信号分析和基于机器学习(ML)的特征提取实现认知自动化;(4)机器和人类之间的互操作性。过程指标的语义集成对于此类实施的成功至关重要。这项工作提出了一种可部署到基于工业信号的控制回路中的数据密集型过程信号的自动语义集成。所提出的系统可从基于图像的数据馈送中快速推断制造事件,并因此触发过程控制信号。实现了两种图像推理方法:基于云的 ML 模型查询和边缘端对象形状检测。根据用例和任务要求,可以为这两种方法指定不同的事件检测任务,以提供全面的系统自我意识。与传统的工业传感器信号相结合,机器视觉系统可以快速理解制造场景,并将提取的语义信息馈送到由专家或支持 ML 的网络系统开发的制造本体中。此外,提取的信号由可编程逻辑控制器(PLC)和现场设备进行解释,以实现认知自动化,从而实现完全自主的工业系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/260e/8272041/1331b2b809a5/sensors-21-04276-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验