Suppr超能文献

Mask R-CNN。

Mask R-CNN.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397. doi: 10.1109/TPAMI.2018.2844175. Epub 2018 Jun 5.

Abstract

We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: https://github.com/facebookresearch/Detectron.

摘要

我们提出了一个概念简单、灵活且通用的目标实例分割框架。我们的方法在图像中高效地检测目标,同时为每个实例生成高质量的分割掩码。该方法称为 Mask R-CNN,通过在现有的边界框识别分支上添加一个用于预测对象掩码的分支,扩展了 Faster R-CNN。Mask R-CNN 易于训练,并且仅对 Faster R-CNN 增加了很小的开销,运行速度为 5 fps。此外,Mask R-CNN 易于推广到其他任务,例如,允许我们在同一个框架中估计人体姿势。我们在 COCO 挑战赛的三个赛道中都取得了最佳成绩,包括实例分割、边界框目标检测和人体关键点检测。没有花里胡哨的东西,Mask R-CNN 在每个任务上都超越了所有现有的单模型参赛作品,包括 COCO 2016 挑战赛的获胜者。我们希望我们的简单而有效的方法将成为一个坚实的基准,并有助于简化未来的实例级识别研究。代码已在:https://github.com/facebookresearch/Detectron 上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验