Suppr超能文献

基于随机波束的非正交多址接入在低延迟 K 用户 MISO 广播信道中的应用

Random Beam-Based Non-Orthogonal Multiple Access for Low Latency K-User MISO Broadcast Channels.

机构信息

Department of Electronics Engineering and Applied Communications Research Center, Hankuk University of Foreign Studies, Yongin 17035, Korea.

Telecommunications & Media Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.

出版信息

Sensors (Basel). 2021 Jun 26;21(13):4373. doi: 10.3390/s21134373.

Abstract

In this paper, we propose random beam-based non-orthogonal multiple access (NOMA) for low latency multiple-input single-output (MISO) broadcast channels, where there is a target signal-to-interference-plus-noise power ratio (SINR) for each user. In our system model, there is a multi-antenna transmitter with its own single antenna users, and the transmitter selects and serves some of them. For low latency, the transmitter exploits random beams, which can reduce the feedback overhead for the channel acquisition, and each beam can support more than a single user with NOMA. In our proposed random beam-based NOMA, each user feeds a selected beam index, the corresponding SINR, and the channel gain, so it feeds one more scalar value compared to the conventional random beamforming. By allocating the same powers across the beams, the transmitter independently selects NOMA users for each beam, so it can also reduce the computational complexity. We optimize our proposed scheme finding the optimal user grouping and the optimal power allocation. The numerical results show that our proposed scheme outperforms the conventional random beamforming by supporting more users for each beam.

摘要

在本文中,我们针对低延迟多输入单输出 (MISO) 广播信道提出了基于随机波束的非正交多址接入 (NOMA),其中每个用户都有一个目标信干噪比 (SINR)。在我们的系统模型中,有一个多天线发射器和它自己的单天线用户,发射器选择并服务其中的一些用户。为了实现低延迟,发射器利用随机波束,这可以减少信道获取的反馈开销,并且每个波束可以使用 NOMA 支持多个用户。在我们提出的基于随机波束的 NOMA 中,每个用户反馈一个选择的波束索引、相应的 SINR 和信道增益,因此与传统的随机波束成形相比,它反馈一个额外的标量值。通过在波束之间分配相同的功率,发射器为每个波束独立选择 NOMA 用户,因此也可以降低计算复杂度。我们通过找到最佳用户分组和最佳功率分配来优化我们的方案。数值结果表明,我们提出的方案通过为每个波束支持更多的用户,从而优于传统的随机波束成形。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f068/8271836/96d69812667d/sensors-21-04373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验