Suppr超能文献

利用化学和生物OSMAC方法由苹果根际相关菌株GS2生产铁载体

Production of Siderophores by an Apple Root-Associated Strain GS2 Using Chemical and Biological OSMAC Approaches.

作者信息

Armin Reyhaneh, Zühlke Sebastian, Grunewaldt-Stöcker Gisela, Mahnkopp-Dirks Felix, Kusari Souvik

机构信息

Center for Mass Spectrometry (CMS), Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany.

Institute of Horticultural Production Systems, Section Phytomedicine, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.

出版信息

Molecules. 2021 Jun 9;26(12):3517. doi: 10.3390/molecules26123517.

Abstract

Apple Replant Disease (ARD) is a significant problem in apple orchards that causes root tissue damage, stunted plant growth, and decline in fruit quality, size, and overall yield. Dysbiosis of apple root-associated microbiome and selective richness of species in the rhizosphere typically concurs root impairment associated with ARD. However, possible roles of secondary metabolites within these observations remain unstudied. Therefore, we employed the One Strain Many Compounds (OSMAC) approach coupled to high-performance liquid chromatography-high-resolution tandem mass spectrometry (HPLC-HRMS) to evaluate the chemical ecology of an apple root-associated strain GS2, temporally over 14 days. The chemical OSMAC approach comprised cultivation media alterations using six different media compositions, which led to the biosynthesis of the iron-chelated siderophores, ferrioxamines. The biological OSMAC approach was concomitantly applied by dual-culture cultivation for microorganismal interactions with an endophytic strain ES16 and the pathogen . This led to the modulation of ferrioxamines produced and further triggered biosynthesis of the unchelated siderophores, desferrioxamines. The structures of the compounds were elucidated using HRMS and by comparison with the literature. We evaluated the dynamics of siderophore production under the combined influence of chemical and biological OSMAC triggers, temporally over 3, 7, and 14 days, to discern the strain's siderophore-mediated chemical ecology. We discuss our results based on the plausible chemical implications of strain GS2 in the rhizosphere.

摘要

苹果再植病(ARD)是苹果园中的一个重大问题,它会导致根系组织受损、植株生长受阻以及果实品质、大小和总产量下降。苹果根系相关微生物群落的失调以及根际物种的选择性丰富通常与ARD相关的根系损伤同时出现。然而,这些观察结果中次生代谢产物的可能作用仍未得到研究。因此,我们采用了单菌株多化合物(OSMAC)方法,并结合高效液相色谱 - 高分辨率串联质谱(HPLC - HRMS),在14天的时间内评估了一种苹果根系相关菌株GS2的化学生态学。化学OSMAC方法包括使用六种不同的培养基组成来改变培养基,这导致了铁螯合铁载体(高铁胺)的生物合成。生物OSMAC方法通过与内生菌株ES16和病原体进行双培养来同时应用于微生物相互作用。这导致了所产生的高铁胺的调节,并进一步触发了未螯合铁载体(去铁胺)的生物合成。使用HRMS并与文献进行比较来阐明化合物的结构。我们在化学和生物OSMAC触发因素的联合影响下,在3天、7天和14天的时间内评估了铁载体产生的动态,以识别该菌株的铁载体介导的化学生态学。我们根据菌株GS2在根际的合理化学影响来讨论我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f0e/8228313/0c70dca526b8/molecules-26-03517-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验