Suppr超能文献

Ti(Al,Si)C材料的结构、形态、热容量及电输运性质

Structure, Morphology, Heat Capacity, and Electrical Transport Properties of Ti(Al,Si)C Materials.

作者信息

Goc Kamil, Przewoźnik Janusz, Witulska Katarzyna, Chlubny Leszek, Tokarz Waldemar, Strączek Tomasz, Michalik Jan Marek, Jurczyk Jakub, Utke Ivo, Lis Jerzy, Kapusta Czesław

机构信息

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.

Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.

出版信息

Materials (Basel). 2021 Jun 11;14(12):3222. doi: 10.3390/ma14123222.

Abstract

A study of TiAlSiC ( = 0 to = 1) MAX-phase alloys is reported. The materials were obtained from mixtures of TiAlC and TiSiC powders with hot pressing sintering technique. They were characterised with X-ray diffraction, heat capacity, electrical resistivity, and magnetoresistance measurements. The results show a good quality crystal structure and metallic properties with high residual resistivity. The resistivity weakly varies with Si doping and shows a small, positive magnetoresistance effect. The magnetoresistance exhibits a quadratic dependence on the magnetic field, which indicates a dominant contribution from open electronic orbits. The Debye temperatures and Sommerfeld coefficient values derived from specific heat data show slight variations with Si content, with decreasing tendency for the former and an increase for the latter. Experimental results were supported by band structure calculations whose results are consistent with the experiment concerning specific heat, resistivity, and magnetoresistance measurements. In particular, they reveal that of the s-electrons at the Fermi level, those of Al and Si have prevailing density of states and, thus predominantly contribute to the metallic conductivity. This also shows that the high residual resistivity of the materials studied is an intrinsic effect, not due to defects of the crystal structure.

摘要

报道了一项关于TiAlSiC(α = 0至α = 1)MAX相合金的研究。这些材料通过热压烧结技术由TiAlC和TiSiC粉末混合物制得。通过X射线衍射、热容量、电阻率和磁阻测量对它们进行了表征。结果表明其具有良好的晶体结构质量和金属特性,且具有高剩余电阻率。电阻率随硅掺杂的变化较弱,并呈现出小的正磁阻效应。磁阻对磁场呈现二次依赖关系,这表明开放电子轨道起主要作用。从比热数据得出的德拜温度和索末菲系数值随硅含量略有变化,前者呈下降趋势,后者呈上升趋势。实验结果得到了能带结构计算的支持,其结果与比热、电阻率和磁阻测量的实验结果一致。特别是,它们揭示了在费米能级处的s电子中,Al和Si的s电子具有占主导地位的态密度,因此对金属导电性起主要作用。这也表明所研究材料的高剩余电阻率是一种本征效应,而非晶体结构缺陷所致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af7c/8230697/3fac43207a19/materials-14-03222-g001.jpg

相似文献

1
Structure, Morphology, Heat Capacity, and Electrical Transport Properties of Ti(Al,Si)C Materials.
Materials (Basel). 2021 Jun 11;14(12):3222. doi: 10.3390/ma14123222.
2
Temperature Evolution of Composition, Thermal, Electrical and Magnetic Properties of TiCT-MXene.
Materials (Basel). 2024 May 8;17(10):2199. doi: 10.3390/ma17102199.
4
Structure, electrical and thermal properties of single-crystal BaCuGdTe.
Dalton Trans. 2023 Jun 20;52(24):8316-8321. doi: 10.1039/d3dt01192e.
5
Electrical transport properties of CuS single crystals.
J Phys Condens Matter. 2012 Jan 11;24(1):015701. doi: 10.1088/0953-8984/24/1/015701. Epub 2011 Dec 2.
6
Temperature dependence of the electrical resistivity and electronic structure of amorphous Fe100-xZrx films and multilayers.
J Phys Condens Matter. 2012 Dec 12;24(49):495402. doi: 10.1088/0953-8984/24/49/495402. Epub 2012 Nov 16.
8
The magnetotransport properties of the intermetallic compound GdCu6.
J Phys Condens Matter. 2012 Apr 11;24(14):146004. doi: 10.1088/0953-8984/24/14/146004. Epub 2012 Mar 15.
9
Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
Acc Chem Res. 2015 Aug 18;48(8):2270-9. doi: 10.1021/acs.accounts.5b00107. Epub 2015 Aug 5.
10
Electronic structure, magnetic properties and electrical resistivity of the Fe(2)V(1-x)Ti(x)Al Heusler alloys: experiment and calculation.
J Phys Condens Matter. 2006 Nov 22;18(46):10319-34. doi: 10.1088/0953-8984/18/46/002. Epub 2006 Nov 1.

引用本文的文献

1
Temperature Evolution of Composition, Thermal, Electrical and Magnetic Properties of TiCT-MXene.
Materials (Basel). 2024 May 8;17(10):2199. doi: 10.3390/ma17102199.
2
Effects of TiC, Si, and Al on Combustion Synthesis of TiSiC/TiC/TiSi Composites.
Materials (Basel). 2023 Sep 9;16(18):6142. doi: 10.3390/ma16186142.

本文引用的文献

2
An Overview of Parameters Controlling the Decomposition and Degradation of Ti-Based MAX Phases.
Materials (Basel). 2019 Feb 4;12(3):473. doi: 10.3390/ma12030473.
3
The Ti AlC MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of n-Butane.
Angew Chem Int Ed Engl. 2018 Feb 5;57(6):1485-1490. doi: 10.1002/anie.201702196. Epub 2018 Jan 9.
4
First-Principles Study of Vacancies in Ti₃SiC₂ and Ti₃AlC₂.
Materials (Basel). 2017 Jan 25;10(2):103. doi: 10.3390/ma10020103.
5
Multiple magnetic phase transitions in Tb(3)Cu(4)Si(4).
J Phys Condens Matter. 2007 Jun 20;19(24):246225. doi: 10.1088/0953-8984/19/24/246225. Epub 2007 May 30.
6
Generalized Gradient Approximation Made Simple.
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验