Suppr超能文献

用于3D生物打印和心脏组织工程的可调谐人源心肌脱细胞细胞外基质

Tunable Human Myocardium Derived Decellularized Extracellular Matrix for 3D Bioprinting and Cardiac Tissue Engineering.

作者信息

Basara Gozde, Ozcebe S Gulberk, Ellis Bradley W, Zorlutuna Pinar

机构信息

Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA.

Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Gels. 2021 Jun 11;7(2):70. doi: 10.3390/gels7020070.

Abstract

The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM's low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks' mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA-MeHA-dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA-dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.

摘要

在心脏组织工程中,生成具有多种细胞类型且机械性能匹配的三维组织构建体仍然是一项挑战。最近,三维生物打印已成为实现这些目标的有力工具。脱细胞细胞外基质(dECM)是一种常见的支架材料,因为它能提供天然的生化环境。不幸的是,dECM的低机械稳定性使其无法单独用于生物打印应用。在本研究中,我们开发了由脱细胞人心脏细胞外基质(dhECM)与甲基丙烯酸明胶(GelMA)或甲基丙烯酸化透明质酸(MeHA)水凝胶组成的生物墨水,这些水凝胶通过紫外线和微生物转谷氨酰胺酶(mTGase)进行双重交联。我们对生物墨水的机械、流变、膨胀、可打印性和生物相容性特性进行了表征。与GelMA-dhECM(GE)水凝胶相比,复合GelMA-MeHA-dhECM(GME)水凝胶的机械性能提高了一个数量级。所有水凝胶都可挤出,并且与人类诱导多能干细胞衍生的心肌细胞(iCMs)和人类心脏成纤维细胞(hCFs)兼容。观察到打印构建体具有类似组织的跳动,且有横纹肌肌动蛋白和连接蛋白43的表达。这些水凝胶复合材料的弹性模量之间的数量级差异为心肌梗死边界建模提供了应用。在此,作为概念验证,我们通过用GE生物墨水打印iCMs和用GME生物墨水打印hCFs,创建了一个对机械性能以及细胞和大分子含量具有可控性的梗死边界区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b837/8293197/d561e4213c4d/gels-07-00070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验