Poni Redi, Neufeld Esra, Capstick Myles, Bodis Stephan, Samaras Theodoros, Kuster Niels
Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland.
Foundation for Research on Information Technologies in Society (IT'IS), 8004 Zurich, Switzerland.
Cancers (Basel). 2021 Jun 30;13(13):3297. doi: 10.3390/cancers13133297.
We present a simulation study investigating the feasibility of electrical impedance tomography (EIT) as a low cost, noninvasive technique for hyperthermia (HT) treatment monitoring and adaptation. Temperature rise in tissues leads to perfusion and tissue conductivity changes that can be reconstructed in 3D by EIT to noninvasively map temperature and perfusion. In this study, we developed reconstruction methods and investigated the achievable accuracy of EIT by simulating HT treatmentlike scenarios, using detailed anatomical models with heterogeneous conductivity distributions. The impact of the size and location of the heated region, the voltage measurement signal-to-noise ratio, and the reference model personalization and accuracy were studied. Results showed that by introducing an iterative reconstruction approach, combined with adaptive prior regions and tissue-dependent penalties, planning-based reference models, measurement-based reweighting, and physics-based constraints, it is possible to map conductivity-changes throughout the heated domain, with an accuracy of around 5% and cm-scale spatial resolution. An initial exploration of the use of multifrequency EIT to separate temperature and perfusion effects yielded promising results, indicating that temperature reconstruction accuracy can be in the order of 1 ∘C. Our results suggest that EIT can provide valuable real-time HT monitoring capabilities. Experimental confirmation in real-world conditions is the next step.
我们开展了一项模拟研究,探究电阻抗断层成像(EIT)作为一种低成本、非侵入性技术用于热疗(HT)治疗监测与调整的可行性。组织温度升高会导致灌注和组织电导率变化,EIT可对这些变化进行三维重建,以无创方式绘制温度和灌注图。在本研究中,我们开发了重建方法,并通过模拟类似热疗治疗的场景,使用具有非均匀电导率分布的详细解剖模型,研究了EIT可实现的精度。研究了加热区域的大小和位置、电压测量信噪比以及参考模型个性化和精度的影响。结果表明,通过引入迭代重建方法,结合自适应先验区域和组织相关惩罚、基于规划的参考模型、基于测量的重新加权以及基于物理的约束,可以在整个加热区域绘制电导率变化图,精度约为5%,空间分辨率为厘米级。对使用多频EIT分离温度和灌注效应的初步探索取得了有前景的结果,表明温度重建精度可达1摄氏度左右。我们的结果表明,EIT可提供有价值的实时热疗监测能力。下一步是在实际条件下进行实验验证。