Suppr超能文献

地表水化学状态的不确定性。

Uncertainty of chemical status in surface waters.

机构信息

Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653, Warsaw, Poland.

出版信息

Sci Rep. 2021 Jul 1;11(1):13644. doi: 10.1038/s41598-021-93051-9.

Abstract

This article addresses the issue of estimating P-the probability of misclassifying the chemical status confidence of a water body status assessment. The main concerns of the authors were chemical quality elements with concentrations in water bodies which are close to or even smaller than the limit of quantification (LOQ). Their values must be set to half of this limit to calculate the mean value. This procedure leads to very low standard deviation values and unrealistic values of P for chemical indicators. In turn, this may lead to the false conclusion that not only is the chemical status good but also that this status assessment is perfect. Therefore, for a more reliable calculation of P, the authors suggested a modified calculation in which the value of half the LOQ for calculating the mean value was kept, but zero as the concentration value for the standard deviation calculation was adopted. The proposed modification has been applied to the Hierarchical Approach procedure for P estimation of the chemical status of Polish rivers and lakes. The crucial finding is that current chemical status assessments may be incorrect in the case of approximately 25% of river water bodies and 30% of lake water bodies categorised as good, and 20% of both types of water bodies classified as below good.

摘要

本文探讨了估计 P 值的问题,即误判水体化学状态评估置信度的概率。作者主要关注的是水体中浓度接近甚至小于定量限 (LOQ) 的化学质量要素。为了计算平均值,必须将这些值设定为该限值的一半。这一过程导致化学指标的 P 值非常低,且不现实。反过来,这可能导致错误的结论,即不仅化学状态“良好”,而且这种状态评估也是完美的。因此,为了更可靠地计算 P 值,作者建议采用一种改进的计算方法,其中保留了将 LOQ 的一半值用于计算平均值的方法,但对于标准差的计算,采用零作为浓度值。所提出的改进已应用于波兰河流和湖泊化学状态 P 值的分层方法估计程序。关键发现是,当前的化学状态评估在大约 25%的河流水体和 30%的湖泊水体被归类为“良好”,以及 20%的这两种类型的水体被归类为“低于良好”的情况下可能是不正确的。

相似文献

1
Uncertainty of chemical status in surface waters.
Sci Rep. 2021 Jul 1;11(1):13644. doi: 10.1038/s41598-021-93051-9.
2
The problem of water body status misclassification-a Hierarchical Approach.
Environ Monit Assess. 2018 Apr 3;190(5):264. doi: 10.1007/s10661-018-6603-9.
3
Probability of misclassifying biological elements in surface waters.
Environ Monit Assess. 2017 Nov 24;189(12):647. doi: 10.1007/s10661-017-6368-6.
4
A new broad typology for rivers and lakes in Europe: Development and application for large-scale environmental assessments.
Sci Total Environ. 2019 Dec 20;697:134043. doi: 10.1016/j.scitotenv.2019.134043. Epub 2019 Aug 22.
6
Heavy metal distribution and water quality characterization of water bodies in Louisiana's Lake Pontchartrain Basin, USA.
Environ Monit Assess. 2016 Nov;188(11):628. doi: 10.1007/s10661-016-5639-y. Epub 2016 Oct 20.
8
Assessment of trophic status of the northeastern Mediterranean coastal waters: eutrophication classification tools revisited.
Environ Sci Pollut Res Int. 2019 May;26(15):14742-14754. doi: 10.1007/s11356-018-2529-6. Epub 2018 Jun 22.
10
Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices.
Chemosphere. 2021 Jan;263:128192. doi: 10.1016/j.chemosphere.2020.128192. Epub 2020 Aug 29.

引用本文的文献

1
Uncertainty in Environmental Micropollutant Modeling.
Environ Manage. 2024 Aug;74(2):380-398. doi: 10.1007/s00267-024-01989-z. Epub 2024 May 30.
2
An Evidence Theory Based Embedding Model for the Management of Smart Water Environments.
Sensors (Basel). 2023 May 11;23(10):4672. doi: 10.3390/s23104672.

本文引用的文献

1
Evaluation of seawater composition in a vast area from the Monte Carlo simulation of georeferenced information in a Bayesian framework.
Chemosphere. 2021 Jan;263:128036. doi: 10.1016/j.chemosphere.2020.128036. Epub 2020 Aug 19.
2
Chemical pollution imposes limitations to the ecological status of European surface waters.
Sci Rep. 2020 Sep 9;10(1):14825. doi: 10.1038/s41598-020-71537-2.
3
Computational material flow analysis for thousands of chemicals of emerging concern in European waters.
J Hazard Mater. 2020 Oct 5;397:122655. doi: 10.1016/j.jhazmat.2020.122655. Epub 2020 Apr 18.
4
Tracking complex mixtures of chemicals in our changing environment.
Science. 2020 Jan 24;367(6476):388-392. doi: 10.1126/science.aay6636.
5
Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment.
Environ Int. 2020 Jan;134:105267. doi: 10.1016/j.envint.2019.105267. Epub 2019 Nov 6.
6
Optimization of River Sampling: Application to Nutrients Distribution in Tagus River Estuary.
Anal Chem. 2019 May 7;91(9):5698-5705. doi: 10.1021/acs.analchem.8b05781. Epub 2019 Apr 19.
7
The problem of water body status misclassification-a Hierarchical Approach.
Environ Monit Assess. 2018 Apr 3;190(5):264. doi: 10.1007/s10661-018-6603-9.
8
Probability of misclassifying biological elements in surface waters.
Environ Monit Assess. 2017 Nov 24;189(12):647. doi: 10.1007/s10661-017-6368-6.
9
Risk of false decision on conformity of a multicomponent material when test results of the components' content are correlated.
Talanta. 2017 Nov 1;174:789-796. doi: 10.1016/j.talanta.2017.06.073. Epub 2017 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验