Palumbo Giandomenico
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland.
Phys Rev Lett. 2021 Jun 18;126(24):246801. doi: 10.1103/PhysRevLett.126.246801.
Here, we introduce and apply non-Abelian tensor Berry connections to topological phases in multiband systems. These gauge connections behave as non-Abelian antisymmetric tensor gauge fields in momentum space and naturally generalize Abelian tensor Berry connections and ordinary non-Abelian (vector) Berry connections. We build these novel gauge fields from momentum-space Higgs fields, which emerge from the degenerate band structure of multiband models. First, we show that the conventional topological invariants of two-dimensional topological insulators and three-dimensional Dirac semimetals can be derived from the winding number associated with the Higgs field. Second, through the non-Abelian tensor Berry connections we construct higher-dimensional Berry-Zak phases and show their role in the topological characterization of several gapped and gapless systems, ranging from two-dimensional Euler insulators to four-dimensional Dirac semimetals. Importantly, through our new theoretical formalism, we identify and characterize a novel class of models that support space-time inversion and chiral symmetries. Our work provides a unifying framework for different multiband topological systems and sheds new light on the emergence of non-Abelian gauge fields in condensed matter physics, with direct implications on the search for novel topological phases in solid-state and synthetic systems.
在这里,我们引入非阿贝尔张量贝里联络并将其应用于多能带系统中的拓扑相。这些规范联络在动量空间中表现为非阿贝尔反对称张量规范场,是阿贝尔张量贝里联络和普通非阿贝尔(矢量)贝里联络的自然推广。我们从动量空间希格斯场构建这些新颖的规范场,它们源自多能带模型的简并能带结构。首先,我们表明二维拓扑绝缘体和三维狄拉克半金属的传统拓扑不变量可从与希格斯场相关的缠绕数导出。其次,通过非阿贝尔张量贝里联络,我们构建了高维贝里 - 扎克相,并展示了它们在从二维欧拉绝缘体到四维狄拉克半金属等几种有隙和无隙系统的拓扑表征中的作用。重要的是,通过我们新的理论形式,我们识别并刻画了一类支持时空反演和手征对称性的新型模型。我们的工作为不同的多能带拓扑系统提供了一个统一框架,为凝聚态物理中非阿贝尔规范场的出现提供了新的见解,对在固态和合成系统中寻找新型拓扑相有直接影响。