IEEE Trans Image Process. 2021;30:6307-6320. doi: 10.1109/TIP.2021.3091909. Epub 2021 Jul 13.
Task-driven semantic video/image coding has drawn considerable attention with the development of intelligent media applications, such as license plate detection, face detection, and medical diagnosis, which focuses on maintaining the semantic information of videos/images. Deep neural network (DNN)-based codecs have been studied for this purpose due to their inherent end-to-end optimization mechanism. However, the traditional hybrid coding framework cannot be optimized in an end-to-end manner, which makes task-driven semantic fidelity metric unable to be automatically integrated into the rate-distortion optimization process. Therefore, it is still attractive and challenging to implement task-driven semantic coding with the traditional hybrid coding framework, which should still be widely used in practical industry for a long time. To solve this challenge, we design semantic maps for different tasks to extract the pixelwise semantic fidelity for videos/images. Instead of directly integrating the semantic fidelity metric into traditional hybrid coding framework, we implement task-driven semantic coding by implementing semantic bit allocation based on reinforcement learning (RL). We formulate the semantic bit allocation problem as a Markov decision process (MDP) and utilize one RL agent to automatically determine the quantization parameters (QPs) for different coding units (CUs) according to the task-driven semantic fidelity metric. Extensive experiments on different tasks, such as classification, detection and segmentation, have demonstrated the superior performance of our approach by achieving an average bitrate saving of 34.39% to 52.62% over the High Efficiency Video Coding (H.265/HEVC) anchor under equivalent task-related semantic fidelity.
任务驱动的语义视频/图像编码在智能媒体应用的发展中引起了广泛关注,例如车牌检测、人脸识别和医疗诊断等,这些应用都侧重于保持视频/图像的语义信息。由于具有固有的端到端优化机制,基于深度神经网络(DNN)的编解码器已经被用于这一目的的研究。然而,传统的混合编码框架无法进行端到端优化,这使得任务驱动的语义保真度度量无法自动集成到率失真优化过程中。因此,使用传统的混合编码框架实现任务驱动的语义编码仍然具有吸引力和挑战性,这种方法在很长一段时间内仍将广泛应用于实际行业。为了解决这个挑战,我们为不同的任务设计语义图,以提取视频/图像的像素级语义保真度。我们不是直接将语义保真度度量直接集成到传统的混合编码框架中,而是通过基于强化学习(RL)的语义比特分配来实现任务驱动的语义编码。我们将语义比特分配问题表述为一个马尔可夫决策过程(MDP),并利用一个 RL 代理根据任务驱动的语义保真度度量自动确定不同编码单元(CU)的量化参数(QP)。在不同的任务(如分类、检测和分割)上进行的广泛实验表明,我们的方法在保持等效任务相关语义保真度的情况下,相对于高效率视频编码(H.265/HEVC)基准,平均节省了 34.39%到 52.62%的比特率。