Elakkiya R, Subramaniyaswamy V, Vijayakumar V, Mahanti Aniket
IEEE J Biomed Health Inform. 2022 Apr;26(4):1464-1471. doi: 10.1109/JBHI.2021.3094311. Epub 2022 Apr 14.
Cervical cancer is one of the common cancers among women and it causes significant mortality in many developing countries. Diagnosis of cervical lesions is done using pap smear test or visual inspection using acetic acid (staining). Digital colposcopy, an inexpensive methodology, provides painless and efficient screening results. Therefore, automating cervical cancer screening using colposcopy images will be highly useful in saving many lives. Nowadays, many automation techniques using computer vision and machine learning in cervical screening gained attention, paving the way for diagnosing cervical cancer. However, most of the methods rely entirely on the annotation of cervical spotting and segmentation. This paper aims to introduce the Faster Small-Object Detection Neural Networks (FSOD-GAN) to address the cervical screening and diagnosis of cervical cancer and the type of cancer using digital colposcopy images. The proposed approach automatically detects the cervical spot using Faster Region-Based Convolutional Neural Network (FR-CNN) and performs the hierarchical multiclass classification of three types of cervical cancer lesions. Experimentation was done with colposcopy data collected from available open sources consisting of 1,993 patients with three cervical categories, and the proposed approach shows 99% accuracy in diagnosing the stages of cervical cancer.
宫颈癌是女性常见的癌症之一,在许多发展中国家导致了很高的死亡率。宫颈病变的诊断通过巴氏涂片检查或使用醋酸(染色)的目视检查来进行。数码阴道镜检查是一种成本低廉的方法,能提供无痛且高效的筛查结果。因此,利用阴道镜图像实现宫颈癌筛查自动化对于挽救许多生命将非常有用。如今,许多在宫颈癌筛查中使用计算机视觉和机器学习的自动化技术受到了关注,为宫颈癌的诊断铺平了道路。然而,大多数方法完全依赖于宫颈斑点的标注和分割。本文旨在引入更快的小目标检测神经网络(FSOD-GAN),以利用数码阴道镜图像解决宫颈癌的筛查和诊断以及癌症类型问题。所提出的方法使用基于区域的更快卷积神经网络(FR-CNN)自动检测宫颈斑点,并对三种类型的宫颈癌病变进行分层多类别分类。使用从现有公开来源收集的包含1993名患有三种宫颈类别的患者的阴道镜数据进行了实验,所提出的方法在诊断宫颈癌阶段方面显示出99%的准确率。