Department of Molecular Genetics and Cell Biology, Chicago, Illinois.
Graduate Program in Biophysical Sciences, Chicago, Illinois.
Biophys J. 2021 Aug 3;120(15):2984-2997. doi: 10.1016/j.bpj.2021.06.023. Epub 2021 Jun 30.
Formins generate unbranched actin filaments by a conserved, processive actin assembly mechanism. Most organisms express multiple formin isoforms that mediate distinct cellular processes and facilitate actin filament polymerization by significantly different rates, but how these actin assembly differences correlate to cellular activity is unclear. We used a computational model of fission yeast cytokinetic ring assembly to test the hypothesis that particular actin assembly properties help tailor formins for specific cellular roles. Simulations run in different actin filament nucleation and elongation conditions revealed that variations in formin's nucleation efficiency critically impact both the probability and timing of contractile ring formation. To probe the physiological importance of nucleation efficiency, we engineered fission yeast formin chimera strains in which the FH1-FH2 actin assembly domains of full-length cytokinesis formin Cdc12 were replaced with the FH1-FH2 domains from functionally and evolutionarily diverse formins with significantly different actin assembly properties. Although Cdc12 chimeras generally support life in fission yeast, quantitative live-cell imaging revealed a range of cytokinesis defects from mild to severe. In agreement with the computational model, chimeras whose nucleation efficiencies are least similar to Cdc12 exhibit more severe cytokinesis defects, specifically in the rate of contractile ring assembly. Together, our computational and experimental results suggest that fission yeast cytokinesis is ideally mediated by a formin with properly tailored actin assembly parameters.
成核因子通过保守的、连续的肌动蛋白组装机制生成无分支的肌动蛋白丝。大多数生物体表达多种成核因子同工型,这些同工型介导不同的细胞过程,并通过显著不同的速率促进肌动蛋白丝聚合,但这些肌动蛋白组装差异与细胞活性如何相关尚不清楚。我们使用裂殖酵母胞质分裂环组装的计算模型来检验这样一个假设,即特定的肌动蛋白组装特性有助于将成核因子定制为特定的细胞角色。在不同的肌动蛋白丝成核和延伸条件下运行的模拟表明,成核因子成核效率的变化对收缩环形成的概率和时间都有至关重要的影响。为了探究成核效率的生理重要性,我们构建了裂殖酵母成核因子嵌合体菌株,其中全长胞质分裂成核因子 Cdc12 的 FH1-FH2 肌动蛋白组装结构域被来自具有显著不同肌动蛋白组装特性的功能和进化上多样化的成核因子的 FH1-FH2 结构域所取代。尽管 Cdc12 嵌合体通常支持裂殖酵母的生存,但定量活细胞成像显示了从轻度到重度的一系列胞质分裂缺陷。与计算模型一致的是,成核效率与 Cdc12 最不相似的嵌合体表现出更严重的胞质分裂缺陷,特别是在收缩环组装的速度上。总之,我们的计算和实验结果表明,裂殖酵母的胞质分裂最理想地由具有适当调整的肌动蛋白组装参数的成核因子介导。