Suppr超能文献

射血分数降低的心力衰竭患者的VerICiguaT全球研究(VICTORIA)试验的临床结局预测:VICTORIA结局模型

Clinical Outcome Predictions for the VerICiguaT Global Study in Subjects With Heart Failure With Reduced Ejection Fraction (VICTORIA) Trial: VICTORIA Outcomes Model.

作者信息

Mentz Robert J, Mulder Hillary, Mosterd Arend, Sweitzer Nancy K, Senni Michele, Butler Javed, Ezekowitz Justin A, Lam Carolyn S P, Pieske Burkert, Ponikowski Piotr, Voors Adriaan A, Anstrom Kevin J, Armstrong Paul W, O'Connor Christopher M

机构信息

Duke Clinical Research Institute, Duke University, Durham, NC.

Duke Clinical Research Institute, Duke University, Durham, NC.

出版信息

J Card Fail. 2021 May 26. doi: 10.1016/j.cardfail.2021.05.016.

Abstract

BACKGROUND

Prediction of outcomes in patients with heart failure (HF) may inform prognosis, clinical decisions regarding treatment selection, and new trial planning. The VICTORIA trial included high-risk patients with HF and reduced ejection fraction and a recent worsening HF event. The study participants had an unusually high event rate despite usage of contemporary guideline-based therapies. To provide generalizable predictive data for a broad population with a recent worsening HF event, we focused on risk prognostication in the placebo group.

METHODS

Data from 2524 participants randomized to placebo with chronic HF (New York Heart Association class [NYHA] II-IV) and ejection fraction <45% were studied and backward variable selection was used to create Cox proportional hazards models for clinical endpoints, selecting from 66 candidate predictors. Final model results were produced, accounting for missing data, non-linearities, and interactions with treatment. Optimism-corrected c-indices were calculated using 200 bootstrap samples.

RESULTS

During a median follow-up of 10.4 months, the primary outcome of HF hospitalization or cardiovascular death occurred in 972 (38.5%) patients. Independent predictors of increased risk for the primary endpoint included HF characteristics (longer HF duration and worse NYHA class), medical history (prior myocardial infarction), and laboratory values (higher N-terminal pro-hormone B-type natriuretic peptide, bilirubin, urate; lower chloride and albumin). Optimism-corrected c-indices were 0.68 for the HF hospitalization/cardiovascular death model, 0.68 for HF hospitalization/all-cause death, 0.72 for cardiovascular death, and 0.73 for all-cause death.

CONCLUSIONS

Predictive models developed in a large diverse clinical trial with comprehensive clinical and laboratory baseline data-including novel measures-performed well in high-risk HF patients who were receiving excellent guideline-based clinical care.

CLINICAL TRIAL REGISTRATION

Clinicaltrials.gov identifier, NCT02861534.

LAY SUMMARY

Patients with heart failure may benefit from tools that help clinicians better understand patient's risk for future events like hospitalization. Relatively few risk models have been created after worsening of heart failure in a contemporary cohort. We provide insights on risk factors for clinical events from a recent large, global trial of patients with worsening heart failure to help clinicians better understand and communicate prognosis and select treatment options.

摘要

背景

预测心力衰竭(HF)患者的预后可用于指导预后判断、有关治疗选择的临床决策以及新试验的规划。VICTORIA试验纳入了射血分数降低且近期有HF病情恶化事件的高危患者。尽管使用了基于当代指南的治疗方法,但研究参与者的事件发生率异常高。为了为近期有HF病情恶化事件的广泛人群提供可推广的预测数据,我们重点关注了安慰剂组的风险预后。

方法

研究了2524例随机分配至安慰剂组的慢性HF患者(纽约心脏协会[NYHA]心功能II-IV级)的数据,其射血分数<45%,并采用向后变量选择法为临床终点创建Cox比例风险模型,从66个候选预测因素中进行选择。生成了最终模型结果,对缺失数据、非线性以及与治疗的相互作用进行了考量。使用200个自抽样样本计算了乐观校正c指数。

结果

在中位随访10.4个月期间,972例(38.5%)患者发生了HF住院或心血管死亡的主要结局。主要终点风险增加的独立预测因素包括HF特征(HF病程更长和NYHA心功能分级更差)、病史(既往心肌梗死)以及实验室检查值(更高的N末端B型利钠肽原、胆红素、尿酸;更低的氯和白蛋白)。HF住院/心血管死亡模型的乐观校正c指数为0.68,HF住院/全因死亡模型为0.68,心血管死亡模型为0.72,全因死亡模型为0.73。

结论

在一项包含全面临床和实验室基线数据(包括新指标)的大型多样化临床试验中开发的预测模型,在接受基于指南的优质临床治疗的高危HF患者中表现良好。

临床试验注册

Clinicaltrials.gov标识符,NCT02861534。

内容概要

心力衰竭患者可能会从有助于临床医生更好地了解患者未来发生如住院等事件风险的工具中获益。在当代队列中,心力衰竭病情恶化后创建的风险模型相对较少。我们从近期一项针对心力衰竭病情恶化患者的大型全球试验中提供了有关临床事件风险因素的见解,以帮助临床医生更好地理解和交流预后情况并选择治疗方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验