Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
Department of Mathematics, The University of Manchester, Manchester, UK.
Philos Trans A Math Phys Eng Sci. 2021 Aug 23;379(2204):20200192. doi: 10.1098/rsta.2020.0192. Epub 2021 Jul 5.
We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-channel data arising for example in dynamic, spectral and tomography. CIL provides an extensive modular optimization framework for prototyping reconstruction methods including sparsity and total variation regularization, as well as tools for loading, preprocessing and visualizing tomographic data. The capabilities of CIL are demonstrated on a synchrotron example dataset and three challenging cases spanning golden-ratio neutron tomography, cone-beam X-ray laminography and positron emission tomography. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
我们介绍了 Core Imaging Library(CIL),这是一个用于层析成像的开源 Python 框架,特别强调对具有挑战性的数据集进行重建。例如,在动态、光谱和层析成像中,常规的滤波反投影重建对于高度噪声、不完整、非标准或多通道数据往往是不够的。CIL 提供了一个广泛的模块化优化框架,用于原型重建方法,包括稀疏和全变差正则化,以及用于加载、预处理和可视化层析数据的工具。CIL 的功能在一个同步加速器示例数据集和三个具有挑战性的案例上得到了验证,这些案例涵盖了黄金比例中子层析、锥束 X 射线断层扫描和正电子发射断层扫描。本文是主题为“协同层析图像重建:第 2 部分”的一部分。