Suppr超能文献

利用秩次信息,通过多观察者排序集抽样估计有序总体。

Estimation of ordinal population with multi-observer ranked set samples using ties information.

作者信息

Alvandi Amirhossein, Hatefi Armin

机构信息

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA.

Department of Mathematics and Statistics, 7512Memorial University of Newfoundland, Memorial University of Newfoundland, St John's, NL, Canada.

出版信息

Stat Methods Med Res. 2021 Aug;30(8):1960-1975. doi: 10.1177/09622802211025989. Epub 2021 Jul 4.

Abstract

In many surveys, we often deal with situations where measuring the study variable is expensive; however, there are easy-to-measure characteristics which can be used as ranking information to obtain more representative samples from the population. Ranked set sampling is successfully employed in these cases as an alternative to commonly used simple random sampling. When the data is ordinal categorical, it is common to apply the ordinal logistic regression approach to ranked set sampling data for the estimation of parameters. This technique first depends on the information of training data. Besides, one is not capable of using the ranking information in the estimation process. In this paper, we propose a ranked set sampling scheme in which ranking information from multiple sources can be combined and incorporated efficiently into both data collection and estimation. The ranked set sampling data is used for non-parametric and maximum likelihood estimation of ordinal categorical population. Through extensive simulation studies, the performance of estimators is evaluated. The methods are finally applied to analyze bone disorder data and obesity data.

摘要

在许多调查中,我们常常会遇到测量研究变量成本高昂的情况;然而,存在一些易于测量的特征,可将其用作排序信息,以便从总体中获取更具代表性的样本。在这些情况下,排序集抽样作为常用简单随机抽样的替代方法被成功采用。当数据为有序分类数据时,通常会应用有序逻辑回归方法对排序集抽样数据进行参数估计。该技术首先依赖于训练数据的信息。此外,在估计过程中无法使用排序信息。在本文中,我们提出了一种排序集抽样方案,其中来自多个来源的排序信息可以被有效组合并纳入数据收集和估计过程。排序集抽样数据用于有序分类总体的非参数估计和最大似然估计。通过广泛的模拟研究,对估计量的性能进行了评估。这些方法最终被应用于分析骨骼疾病数据和肥胖数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验