Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA.
Trends Ecol Evol. 2021 Sep;36(9):860-873. doi: 10.1016/j.tree.2021.05.009. Epub 2021 Jul 1.
Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This 'ecomechanical approach' integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework.
物理原理和定律决定了可能的生物体表型的集合。然后,来自发育、环境和进化历史的约束产生可行的、综合的表型。我们提出了一个考虑不断变化的环境作用的理论和实践框架。这种“生态力学方法”将功能性生物体特征与生态变量相结合。这种方法使我们能够预测物种在生存和分布上的变化,并为表型多样性提供关键的见解。我们概述了如何使用树木的曳力诱导弯曲作为一个例子来使用生态力学范例。我们的方法可以纳入现有的研究,并有助于建立跨学科的桥梁。最后,我们确定了大规模数据收集、分析以及传播与该框架相关的模型所需的关键因素。