Campi C, Marchetti F, Perracchione E
Dipartimento di Matematica DIMA, Università di Genova, Genoa, Italy.
Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Padua, Italy.
Adv Comput Math. 2021;47(4):51. doi: 10.1007/s10444-021-09875-6. Epub 2021 Jun 26.
We investigate the use of the so-called variably scaled kernels (VSKs) for learning tasks, with a particular focus on support vector machine (SVM) classifiers and kernel regression networks (KRNs). Concerning the kernels used to train the models, under appropriate assumptions, the VSKs turn out to be and than the standard ones. Numerical experiments and applications to breast cancer and coronavirus disease 2019 (COVID-19) data support our claims. For the practical implementation of the VSK setting, we need to select a suitable . To this aim, we propose different choices, including for SVMs a probabilistic approach based on the naive Bayes (NB) classifier. For the classification task, we also numerically show that the VSKs inspire an alternative scheme to the sometimes computationally demanding feature extraction procedures.
我们研究了所谓的可变尺度核(VSK)在学习任务中的应用,特别关注支持向量机(SVM)分类器和核回归网络(KRN)。关于用于训练模型的核,在适当的假设下,VSK 比标准核更 且 。对乳腺癌和 2019 冠状病毒病(COVID-19)数据的数值实验和应用支持了我们的观点。对于 VSK 设置的实际实现,我们需要选择一个合适的 。为此,我们提出了不同的选择,包括为 SVM 提出一种基于朴素贝叶斯(NB)分类器的概率方法。对于分类任务,我们还通过数值表明,VSK 激发了一种替代方案,以替代有时计算量较大的特征提取过程。