Wedekind Henri, Kats Elina, Weiss Anna-Carina, Thiesler Hauke, Klaus Christine, Kispert Andreas, Horstkorte Rüdiger, Neumann Harald, Weinhold Birgit, Münster-Kühnel Anja, Abeln Markus
Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
Glycobiology. 2021 Dec 18;31(11):1478-1489. doi: 10.1093/glycob/cwab069.
Among the enzymes of the biosynthesis of sialoglycoconjugates, uridine diphosphate-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), catalyzing the first essential step of the sialic acid (Sia) de novo biosynthesis, and cytidine monophosphate (CMP)-Sia synthase (CMAS), activating Sia to CMP-Sia, are particularly important. The knockout of either of these enzymes in mice is embryonically lethal. While the lethality of Cmas-/- mice has been attributed to a maternal complement attack against asialo fetal placental cells, the cause of lethality in Gne-deficient embryos has remained elusive. Here, we advanced the significance of sialylation for embryonic development through detailed histological analyses of Gne-/- embryos and placentae. We found that Gne-/- embryonic and extraembryonic tissues are hyposialylated rather than being completely deficient of sialoglycans, which holds true for Cmas-/- embryos. Residual sialylation of Gne-/- cells can be explained by scavenging free Sia from sialylated maternal serum glycoconjugates via the lysosomal salvage pathway. The placental architecture of Gne-/- mice was unaffected, but severe hemorrhages in the neuroepithelium with extensive bleeding into the cephalic ventricles were present at E12.5 in the mutants. At E13.5, the vast majority of Gne-/- embryos were asystolic. This phenotype persisted when Gne-/- mice were backcrossed to a complement component 3-deficient background, confirming distinct pathomechanisms of Cmas-/- and Gne-/- mice. We conclude that the low level of sialylation observed in Gne-/- mice is sufficient both for immune homeostasis at the fetal-maternal interface and for embryonic development until E12.5. However, formation of the neural microvasculature is the first critical process, depending on a higher degree of sialylation during development of the embryo proper.
在唾液酸糖缀合物的生物合成酶中,尿苷二磷酸-N-乙酰葡糖胺-2-差向异构酶/N-乙酰甘露糖胺激酶(GNE)催化唾液酸(Sia)从头生物合成的第一步,胞苷单磷酸(CMP)-Sia合成酶(CMAS)将Sia激活为CMP-Sia,这两种酶尤为重要。在小鼠中敲除这两种酶中的任何一种都会导致胚胎致死。虽然Cmas-/-小鼠的致死性归因于母体对去唾液酸胎儿胎盘细胞的补体攻击,但Gne缺陷胚胎的致死原因仍不清楚。在这里,我们通过对Gne-/-胚胎和胎盘进行详细的组织学分析,进一步探讨了唾液酸化对胚胎发育的重要性。我们发现,Gne-/-胚胎和胚外组织唾液酸化程度较低,而不是完全缺乏唾液酸聚糖,Cmas-/-胚胎也是如此。Gne-/-细胞的残余唾液酸化可以通过溶酶体挽救途径从唾液酸化的母体血清糖缀合物中清除游离Sia来解释。Gne-/-小鼠的胎盘结构未受影响,但在E12.5时,突变体的神经上皮出现严重出血,并大量渗入脑室。在E13.5时,绝大多数Gne-/-胚胎无心跳。当Gne-/-小鼠回交至补体成分3缺陷背景时,这种表型仍然存在,这证实了Cmas-/-和Gne-/-小鼠存在不同的病理机制。我们得出结论,在Gne-/-小鼠中观察到的低水平唾液酸化对于胎儿-母体界面的免疫稳态以及直到E12.5的胚胎发育都是足够的。然而,神经微血管的形成是第一个关键过程,在胚胎自身发育过程中需要更高程度的唾液酸化。