Wu Tianwen, Wang Yiran, Zhao Hongbin, Dong Junping, Xu Jiaqiang
Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, PR China.
College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, PR China.
J Colloid Interface Sci. 2021 Dec;603:706-715. doi: 10.1016/j.jcis.2021.06.116. Epub 2021 Jun 27.
Template-assisted synthesis strategy is an effective approach to prepare high performance oxygen reduction catalyst. The Fe-N/C catalysts were prepared via high temperature pyrolysis of the composites containing Fe-loaded mesoporous silica nanospheres and polypyrrole wrapped on it (Fe/mSiO@PPY). Fe loading ways combined with polymerization means of pyrrole greatly influence the structure and morphology of the final catalysts. By controlling the type of templates (mesoporous, microporous and nonporous templates) and synthesis conditions, Si doped Fe-N/C (Si-Fe-N/C) catalyst with hollow shell structures was obtained. The multiple heteroatom co-doping of Si, Fe and N in carbon framework are confirmed by EDS, XPS and Raman. The co-doping of Fe and N increases the oxygen reduction reaction (ORR) catalytic activities, while the doping of Si facilitates graphitization degree of carbon framework. The electrochemical performance of the Si-Fe-N/C catalyst was evaluated by the linear sweep voltammograms (LSV). It exhibits higher current density (5.4 mA cm) and more positive half-wave potential (0.83 V vs. RHE), which is comparable to commercial Pt/C catalyst. Stability tests show that the Si-Fe-N/C catalyst possesses excellent durability and more than 90% of its original activity can be retained after 50,000 s running at 0.68 V (vs. RHE).
模板辅助合成策略是制备高性能氧还原催化剂的有效方法。通过对负载铁的介孔二氧化硅纳米球与包裹在其上的聚吡咯的复合材料(Fe/mSiO@PPY)进行高温热解来制备Fe-N/C催化剂。铁的负载方式与吡咯的聚合方式极大地影响了最终催化剂的结构和形貌。通过控制模板类型(介孔、微孔和无孔模板)及合成条件,获得了具有中空壳结构的硅掺杂Fe-N/C(Si-Fe-N/C)催化剂。EDS、XPS和拉曼光谱证实了碳骨架中Si、Fe和N的多杂原子共掺杂。Fe和N的共掺杂提高了氧还原反应(ORR)的催化活性,而Si的掺杂促进了碳骨架的石墨化程度。通过线性扫描伏安图(LSV)评估了Si-Fe-N/C催化剂的电化学性能。它表现出更高的电流密度(5.4 mA cm)和更正的半波电位(相对于可逆氢电极,0.83 V),与商业Pt/C催化剂相当。稳定性测试表明,Si-Fe-N/C催化剂具有优异的耐久性,在0.68 V(相对于可逆氢电极)下运行50000 s后,仍可保留其原始活性的90%以上。