Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain | Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES), Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain.
Departamento de Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain.
Curr Med Chem. 2022;29(7):1147-1172. doi: 10.2174/0929867328666210705154046.
Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in a plethora of essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants, and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with C is boosting the resolution and detail which analyzed glycan structures can reach. In turn, structural information derived from NMR complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional longrange observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.
碳水化合物无论是游离的还是与其他生物分子结合的糖缀合物,都参与了大量重要的生物过程。从化学功能的角度来看,它们看似简单,但实际上具有非凡的多样性和结构复杂性。深入解析其原子水平的结构对于理解其生物功能和活性至关重要,但这仍然是一项具有挑战性的任务,需要互补的方法,目前还没有通用的程序可用于研究这种复杂的天然聚糖。
核磁共振波谱(NMR)的多功能性通常使其成为研究溶液中聚糖和碳水化合物的首选方法。最基本的 NMR 参数,即化学位移、偶合常数和核 Overhauser 效应,允许定义短链或重复链序列,并表征其结构和局部几何形状,无论是在自由状态还是与其他生物分子相互作用时,从而提供有关分子识别过程的附加信息。
广泛或选择性地用 C 标记碳水化合物分子,提高了分析聚糖结构所能达到的分辨率和细节。反过来,NMR 衍生的结构信息与分子建模和理论计算相结合,也可以提供碳水化合物结构构象灵活性的动态信息。此外,使用部分取向介质或顺磁扰动,可以引入额外的远程可观测性,从而提供更长和支化的聚糖链的结构信息。
在这篇综述中,我们提供了这些研究的例子,并概述了糖生物学领域中最近和最相关的 NMR 应用。