Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Genet. 2021 Aug;53(8):1260-1269. doi: 10.1038/s41588-021-00892-1. Epub 2021 Jul 5.
Exome association studies to date have generally been underpowered to systematically evaluate the phenotypic impact of very rare coding variants. We leveraged extensive haplotype sharing between 49,960 exome-sequenced UK Biobank participants and the remainder of the cohort (total n ≈ 500,000) to impute exome-wide variants with accuracy R > 0.5 down to minor allele frequency (MAF) ~0.00005. Association and fine-mapping analyses of 54 quantitative traits identified 1,189 significant associations (P < 5 × 10) involving 675 distinct rare protein-altering variants (MAF < 0.01) that passed stringent filters for likely causality. Across all traits, 49% of associations (578/1,189) occurred in genes with two or more hits; follow-up analyses of these genes identified allelic series containing up to 45 distinct 'likely-causal' variants. Our results demonstrate the utility of within-cohort imputation in population-scale genome-wide association studies, provide a catalog of likely-causal, large-effect coding variant associations and foreshadow the insights that will be revealed as genetic biobank studies continue to grow.
迄今为止,外显子组关联研究的效力通常不足以系统地评估非常罕见的编码变异对表型的影响。我们利用 49960 名英国生物库外显子组测序参与者和队列其余部分(总计约 50 万人)之间广泛的单倍型共享,以高达 R > 0.5 的准确性推断外显子范围的变体,最小等位基因频率(MAF)低至约 0.00005。对 54 个定量性状的关联和精细映射分析确定了 1189 个显著关联(P < 5 × 10),涉及 675 个独特的罕见蛋白改变变体(MAF < 0.01),这些变体通过了可能因果关系的严格筛选。在所有性状中,49%的关联(578/1189)发生在有两个或更多命中的基因中;对这些基因的后续分析确定了包含多达 45 个不同“可能因果”变体的等位基因系列。我们的研究结果表明,在人群规模的全基因组关联研究中,使用队列内的推断是有用的,提供了可能因果、大效应编码变异关联的目录,并预示着随着遗传生物库研究的继续增长,将揭示出哪些见解。
Nat Genet. 2019-11-25
Am J Hum Genet. 2019-12-19
Prog Neuropsychopharmacol Biol Psychiatry. 2024-3-2
Cardiovasc Diabetol. 2025-8-18
Nat Rev Genet. 2025-7-28
Comput Struct Biotechnol J. 2025-6-25
Am J Hum Biol. 2025-7
Nat Genet. 2021-2
Nat Rev Genet. 2019-10-11