文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种资源高效的工具,用于大规模数据的混合模型关联分析。

A resource-efficient tool for mixed model association analysis of large-scale data.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.

Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, China.

出版信息

Nat Genet. 2019 Dec;51(12):1749-1755. doi: 10.1038/s41588-019-0530-8. Epub 2019 Nov 25.


DOI:10.1038/s41588-019-0530-8
PMID:31768069
Abstract

The genome-wide association study (GWAS) has been widely used as an experimental design to detect associations between genetic variants and a phenotype. Two major confounding factors, population stratification and relatedness, could potentially lead to inflated GWAS test statistics and hence to spurious associations. Mixed linear model (MLM)-based approaches can be used to account for sample structure. However, genome-wide association (GWA) analyses in biobank samples such as the UK Biobank (UKB) often exceed the capability of most existing MLM-based tools especially if the number of traits is large. Here, we develop an MLM-based tool (fastGWA) that controls for population stratification by principal components and for relatedness by a sparse genetic relationship matrix for GWA analyses of biobank-scale data. We demonstrate by extensive simulations that fastGWA is reliable, robust and highly resource-efficient. We then apply fastGWA to 2,173 traits on array-genotyped and imputed samples from 456,422 individuals and to 2,048 traits on whole-exome-sequenced samples from 46,191 individuals in the UKB.

摘要

全基因组关联研究(GWAS)已被广泛用作实验设计,以检测遗传变异与表型之间的关联。两个主要的混杂因素,群体分层和相关性,可能导致 GWAS 检验统计量膨胀,从而导致虚假关联。基于混合线性模型(MLM)的方法可用于解释样本结构。然而,英国生物库(UKB)等生物库样本中的全基因组关联(GWA)分析通常超出了大多数现有基于 MLM 的工具的能力,特别是如果性状数量很大。在这里,我们开发了一种基于 MLM 的工具(fastGWA),该工具通过主成分控制群体分层,通过稀疏遗传关系矩阵控制相关性,用于生物库规模数据的 GWA 分析。我们通过广泛的模拟证明,fastGWA 是可靠的、鲁棒的和高度资源高效的。然后,我们将 fastGWA 应用于 UKB 中 456422 名个体的数组基因分型和导入样本中的 2173 个性状,以及 46191 名个体的全外显子测序样本中的 2048 个性状。

相似文献

[1]
A resource-efficient tool for mixed model association analysis of large-scale data.

Nat Genet. 2019-11-25

[2]
A generalized linear mixed model association tool for biobank-scale data.

Nat Genet. 2021-11

[3]
Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses.

Nat Genet. 2021-8

[4]
A fast and powerful linear mixed model approach for genotype-environment interaction tests in large-scale GWAS.

Brief Bioinform. 2023-1-19

[5]
Efficient identification of trait-associated loss-of-function variants in the UK Biobank cohort by exome-sequencing based genotype imputation.

Genet Epidemiol. 2023-3

[6]
Fine-scale population structure in the UK Biobank: implications for genome-wide association studies.

Hum Mol Genet. 2020-9-29

[7]
UK Biobank Whole-Exome Sequence Binary Phenome Analysis with Robust Region-Based Rare-Variant Test.

Am J Hum Genet. 2019-12-19

[8]
Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato.

G3 (Bethesda). 2018-10-3

[9]
Scalable mixed model methods for set-based association studies on large-scale categorical data analysis and its application to exome-sequencing data in UK Biobank.

Am J Hum Genet. 2023-5-4

[10]
A scalable variational inference approach for increased mixed-model association power.

Nat Genet. 2025-2

引用本文的文献

[1]
A phenome-wide association and Mendelian randomization study for suicide attempt within UK Biobank.

Mol Psychiatry. 2025-9-2

[2]
Genetically proxied blood pressure, vascular brain injury, and Alzheimer's disease pathology.

Alzheimers Dement. 2025-7

[3]
Multi-organ AI Endophenotypes Chart the Heterogeneity of Pan-disease in the Brain, Eye, and Heart.

medRxiv. 2025-8-13

[4]
Epigenetic age acceleration and midlife cognition: joint evidence from observational study and Mendelian randomization.

NPJ Aging. 2025-8-18

[5]
Evaluating the Causal Effects of ADHD and Autism on Cardiovascular Diseases and Vice Versa: A Systematic Review and Meta-Analysis of Mendelian Randomization Studies.

Cells. 2025-7-31

[6]
Genome-wide analyses reveal intricate genetic mechanisms underlying egg production efficiency in chickens.

J Anim Sci Biotechnol. 2025-8-11

[7]
LDAK-KVIK performs fast and powerful mixed-model association analysis of quantitative and binary phenotypes.

Nat Genet. 2025-8-11

[8]
Non-coding genetic elements of lung cancer identified using whole genome sequencing in 13,722 Chinese.

Nat Commun. 2025-8-9

[9]
Charting structural brain asymmetry across the human lifespan.

bioRxiv. 2025-7-24

[10]
Large-scale genome-wide analyses with proteomics integration reveal novel loci and biological insights into frailty.

Nat Aging. 2025-8

本文引用的文献

[1]
The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019.

Nucleic Acids Res. 2019-1-8

[2]
An atlas of genetic associations in UK Biobank.

Nat Genet. 2018-10-22

[3]
The UK Biobank resource with deep phenotyping and genomic data.

Nature. 2018-10-10

[4]
Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects.

Nat Commun. 2018-10-2

[5]
Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.

Nat Genet. 2018-8-13

[6]
Mixed-model association for biobank-scale datasets.

Nat Genet. 2018-7

[7]
10 Years of GWAS Discovery: Biology, Function, and Translation.

Am J Hum Genet. 2017-7-6

[8]
Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data.

Genome Biol. 2017-5-16

[9]
FlashPCA2: principal component analysis of Biobank-scale genotype datasets.

Bioinformatics. 2017-9-1

[10]
Phenome-wide heritability analysis of the UK Biobank.

PLoS Genet. 2017-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索