Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695.
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695.
J Biomech Eng. 2022 Jan 1;144(1). doi: 10.1115/1.4051661.
Finite element analysis is a useful tool to model growth of biological tissues and predict how growth can be impacted by stimuli. Previous work has simulated growth using node-based or element-based approaches, and this implementation choice may influence predicted growth, irrespective of the applied growth model. This study directly compared node-based and element-based approaches to understand the isolated impact of implementation method on growth predictions by simulating growth of a bone rudiment geometry, and determined what conditions produce similar results between the approaches. We used a previously reported node-based approach implemented via thermal expansion and an element-based approach implemented via osmotic swelling, and we derived a mathematical relationship to relate the growth resulting from these approaches. We found that material properties (modulus) affected growth in the element-based approach, with growth completely restricted for high modulus values relative to the growth stimulus, and no restriction for low modulus values. The node-based approach was unaffected by modulus. Node- and element-based approaches matched marginally better when the conversion coefficient to relate the approaches was optimized based on the results of initial simulations, rather than using the theoretically predicted conversion coefficient (median difference in node position 0.042 cm versus 0.052 cm, respectively). In summary, we illustrate here the importance of the choice of implementation approach for modeling growth, provide a framework for converting models between implementation approaches, and highlight important considerations for comparing results in prior work and developing new models of tissue growth.
有限元分析是一种有用的工具,可以模拟生物组织的生长,并预测生长如何受到刺激的影响。以前的工作已经使用基于节点或基于元素的方法来模拟生长,而这种实现方法的选择可能会影响预测的生长,而与应用的生长模型无关。本研究直接比较了基于节点和基于元素的方法,以了解实现方法对生长预测的孤立影响,方法是通过模拟骨原基几何形状的生长,并确定在什么条件下方法之间会产生相似的结果。我们使用了先前报道的基于节点的方法,该方法通过热膨胀实现,以及基于元素的方法,该方法通过渗透膨胀实现,并推导出了一种数学关系来关联这两种方法产生的生长。我们发现,材料特性(模量)会影响基于元素的方法中的生长,与生长刺激相比,高模量值会完全限制生长,而低模量值则不会受到限制。节点方法不受模量影响。当根据初始模拟的结果优化用于关联两种方法的转换系数,而不是使用理论预测的转换系数(节点位置的中位数差异分别为 0.042cm 和 0.052cm)时,基于节点和基于元素的方法匹配得更好。总之,我们在这里说明了为建模生长选择实现方法的重要性,提供了在实现方法之间转换模型的框架,并强调了在比较以前工作的结果和开发新的组织生长模型时的重要考虑因素。