Wachs Susanne J, Behling Christopher, Ranninger Johanna, Möller Jonas, Mayrhofer Karl J J, Berkes Balázs B
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany.
Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33075-33082. doi: 10.1021/acsami.1c07932. Epub 2021 Jul 7.
The dissolution of transition metals (TMs) from cathode materials and their deposition on the anode represents a serious degradation process and, with that, a shortcoming of lithium-ion batteries. It occurs particularly at high charge voltages (>4.3 V), contributing to severe capacity loss and thus impeding the increase of cell voltage as a simple measure to increase energy density. We present here for the first time the online detection of dissolved TMs from a Ni-rich layered oxide cathode material with unprecedented potential and time resolution in potentiodynamic scans. To this aid, we used the coupling of an electroanalytical flow cell (EFC) with inductively coupled plasma mass spectrometry (ICP-MS), which is demonstrated to be an ideal tool for a fast performance assessment of new cathode materials from initial cycles. The simultaneous analysis of electrochemical and dissolution data allows hitherto hidden insights into the processes' characteristics and underlying mechanisms.
过渡金属(TMs)从阴极材料中溶解并沉积在阳极上是一个严重的电池退化过程,也是锂离子电池的一个缺点。这种情况尤其发生在高充电电压(>4.3 V)时,会导致严重的容量损失,从而阻碍通过简单提高电池电压来增加能量密度的方法。我们首次在此展示了在动电位扫描中以前所未有的电位和时间分辨率对富镍层状氧化物阴极材料中溶解的过渡金属进行在线检测。为此,我们将电分析流动池(EFC)与电感耦合等离子体质谱(ICP-MS)联用,这被证明是从初始循环快速评估新型阴极材料性能的理想工具。电化学和溶解数据的同步分析使我们能够深入了解这些过程的特征和潜在机制,而这些见解在此之前一直是隐藏的。