Suppr超能文献

利用芯片上的电化学质谱法探究锂离子电池的降解情况。

Probing Degradation in Lithium Ion Batteries with On-Chip Electrochemistry Mass Spectrometry.

作者信息

Thornton Daisy B, Davies Bethan J V, Scott Soren B, Aguadero Ainara, Ryan Mary P, Stephens Ifan E L

机构信息

Department of Materials, Imperial College London, London, SW7, UK.

The Faraday Institution, Harwell Science and Innovation Campus, Harwell, OX11 0RA, UK.

出版信息

Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202315357. doi: 10.1002/anie.202315357. Epub 2023 Dec 29.

Abstract

The rapid uptake of lithium ion batteries (LIBs) for large scale electric vehicle and energy storage applications requires a deeper understanding of the degradation mechanisms. Capacity fade is due to the complex interplay between phase transitions, electrolyte decomposition and transition metal dissolution; many of these poorly understood parasitic reactions evolve gases as a side product. Here we present an on-chip electrochemistry mass spectrometry method that enables ultra-sensitive, fully quantified and time resolved detection of volatile species evolving from an operating LIB. The technique's electrochemical performance and mass transport is described by a finite element model and then experimentally used to demonstrate the variety of new insights into LIB performance. We show the versatility of the technique, including (a) observation of oxygen evolving from a LiNiMnCoO cathode and (b) the solid electrolyte interphase formation reaction on graphite in a variety of electrolytes, enabling the deconvolution of lithium inventory loss (c) the first direct evidence, by virtue of the improved time resolution of our technique, that carbon dioxide reduction to ethylene takes place in a lithium ion battery. The emerging insight will guide and validate battery lifetime models, as well as inform the design of longer lasting batteries.

摘要

锂离子电池(LIBs)在大规模电动汽车和储能应用中的迅速采用,需要更深入地了解其降解机制。容量衰减是由于相变、电解质分解和过渡金属溶解之间的复杂相互作用;许多这些尚未完全理解的寄生反应会产生气体作为副产物。在此,我们展示了一种片上电化学质谱方法,该方法能够对运行中的LIB释放的挥发性物质进行超灵敏、完全定量和时间分辨检测。该技术的电化学性能和质量传输由有限元模型描述,然后通过实验用于展示对LIB性能的各种新见解。我们展示了该技术的多功能性,包括(a)观察从LiNiMnCoO阴极释放的氧气,以及(b)在各种电解质中石墨上的固体电解质界面形成反应,从而能够反卷积锂库存损失;(c)凭借我们技术改进的时间分辨率,首次直接证明锂离子电池中二氧化碳还原为乙烯。这些新出现的见解将指导和验证电池寿命模型,并为设计更持久的电池提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3b9/10962541/09914c47e57b/ANIE-63-0-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验