Suppr超能文献

船舶舱底的高分类多样性对监测微生物腐蚀提出了挑战,但也为利用群落功能分析提供了机会。

High Taxonomic Diversity in Ship Bilges Presents Challenges for Monitoring Microbial Corrosion and Opportunity To Utilize Community Functional Profiling.

机构信息

Faculty of Science, Engineering and Technology, Swinburne University of Technologygrid.1027.4, Hawthorn, VIC, Australia.

Defence Science and Technology Group, Fishermans Bend, VIC, Australia.

出版信息

Appl Environ Microbiol. 2021 Aug 26;87(18):e0089021. doi: 10.1128/AEM.00890-21.

Abstract

One of the key areas in which microbially influenced corrosion (MIC) has been found to be a problem is in the bilges of maritime vessels. To establish effective biological monitoring protocols, baseline knowledge of the temporal and spatial biological variation within bilges, as well as the effectiveness of different sampling methodologies, is critical. We used 16S rRNA gene metabarcoding of pelagic and sessile bacterial communities from ship bilges to assess the variation in bilge bacterial communities to determine how the inherent bilge diversity could guide or constrain biological monitoring. Bilge communities exhibited high levels of spatial and temporal variation, with >80% of the community able to be turned over in the space of 3 months, likely due to disturbance events such as cleaning and maintenance. Sessile and pelagic communities within a given bilge were also inherently distinct, with dominant exact sequence variants (ESVs) rarely shared between the two. Taxa containing KEGG orthologies (KOs) associated with dissimilatory sulfate reduction and biofilm production, functions typically associated with MIC, were generally more prevalent in sessile communities. Collectively, our findings indicate that neither bilge water nor an unaffected bilge from within the same vessel would constitute an appropriate reference community for MIC diagnosis. Optimal sampling locations and strategies that could be incorporated into a standardized method for monitoring bilge biology in relation to MIC were identified. Finally, taxonomic and functional comparisons of bilge diversity highlight the potential of functional approaches in future biological monitoring of MIC and MIC mitigation strategies in general. Microbially influenced corrosion (MIC) has been estimated to contribute 20 to 50% of the costs associated with corrosion globally. Diagnosis and monitoring of MIC are complex problems requiring knowledge of corrosion rates, corrosion morphology, and the associated microbiology to distinguish MIC from abiotic corrosion processes. Historically, biological monitoring of MIC utilized knowledge to monitor sulfate-reducing bacteria; however, it is becoming widely accepted that a holistic or community-level understanding of corrosion-associated microbiology is needed for MIC diagnosis and monitoring. Before biology associated with MIC attack can be identified, standardized protocols for sampling and monitoring must be developed. The significance of our research is in contributing to the development of robust and repeatable sampling strategies of bilges, which are required for the development of standardized biological monitoring methods for MIC. We achieve this via a biodiversity survey of bilge communities and by comparing taxonomic and functional variation.

摘要

在发现微生物影响腐蚀(MIC)问题的关键领域之一是在船舶的舱底。为了建立有效的生物监测方案,了解舱底内时间和空间生物学变化的基线知识,以及不同采样方法的有效性至关重要。我们使用浮游和固着细菌群落的 16S rRNA 基因代谢组学对船舶舱底进行了研究,以评估舱底细菌群落的变化,以确定内在的舱底多样性如何指导或限制生物监测。舱底群落表现出高度的时空变异性,超过 80%的群落能够在 3 个月的时间内被更替,这可能是由于清洁和维护等干扰事件。给定舱底内的固着和浮游群落也固有不同,很少有两个群落共有的优势确切序列变体(ESV)。含有与异化硫酸盐还原和生物膜形成相关的 KEGG 直系同源物(KOs)的分类群通常在固着群落中更为普遍,这些功能通常与 MIC 相关。总的来说,我们的研究结果表明,无论是舱底水还是同一艘船内未受影响的舱底都不能构成 MIC 诊断的合适参考群落。确定了可纳入用于监测与 MIC 相关的舱底生物学的标准化方法的最佳采样位置和策略。最后,舱底多样性的分类学和功能比较突出了功能方法在未来 MIC 生物监测和一般 MIC 缓解策略中的潜力。据估计,微生物影响腐蚀(MIC)造成的全球腐蚀成本占 20%至 50%。MIC 的诊断和监测是一个复杂的问题,需要了解腐蚀速率、腐蚀形态以及相关微生物学,以将 MIC 与非生物腐蚀过程区分开来。从历史上看,MIC 的生物监测利用了硫酸盐还原菌的知识;然而,人们普遍认为,需要对与腐蚀相关的微生物群落进行整体或群落水平的理解,才能进行 MIC 诊断和监测。在确定与 MIC 攻击相关的生物学之前,必须制定用于采样和监测的标准化协议。我们研究的意义在于为开发用于 MIC 标准化生物监测方法的舱底稳健且可重复的采样策略做出贡献。我们通过对舱底群落的生物多样性调查并通过比较分类学和功能变化来实现这一目标。

相似文献

2
Global Comparison of the Bacterial Communities of Bilge Water, Boat Surfaces, and External Port Water.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01804-19. Print 2019 Dec 15.
4
Design features of offshore oil production platforms influence their susceptibility to biocorrosion.
Appl Microbiol Biotechnol. 2017 Aug;101(16):6517-6529. doi: 10.1007/s00253-017-8356-8. Epub 2017 Jun 8.
5
Microbially influenced corrosion communities associated with fuel-grade ethanol environments.
Appl Microbiol Biotechnol. 2015 Aug;99(16):6945-57. doi: 10.1007/s00253-015-6729-4. Epub 2015 Jun 20.
6
Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.
Appl Environ Microbiol. 2016 Apr 4;82(8):2545-2554. doi: 10.1128/AEM.03842-15. Print 2016 Apr.
10
Evaluation of biofilm assembly and microbial diversity on a freshwater, ferrous-hulled shipwreck.
Appl Environ Microbiol. 2024 Nov 20;90(11):e0177024. doi: 10.1128/aem.01770-24. Epub 2024 Oct 16.

引用本文的文献

本文引用的文献

1
Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change.
ISME J. 2020 Jan;14(1):1-9. doi: 10.1038/s41396-019-0510-0. Epub 2019 Sep 25.
2
Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
Nat Biotechnol. 2019 Aug;37(8):852-857. doi: 10.1038/s41587-019-0209-9.
3
Marine biofilms constitute a bank of hidden microbial diversity and functional potential.
Nat Commun. 2019 Jan 31;10(1):517. doi: 10.1038/s41467-019-08463-z.
5
16S rRNA gene profiling of planktonic and biofilm microbial populations in the Gulf of Guinea using Illumina NGS.
Mar Environ Res. 2016 Dec;122:105-112. doi: 10.1016/j.marenvres.2016.10.001. Epub 2016 Oct 6.
6
DADA2: High-resolution sample inference from Illumina amplicon data.
Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23.
7
Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database.
Gigascience. 2016 May 18;5:21. doi: 10.1186/s13742-016-0126-5. eCollection 2016.
8
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Microbiol Mol Biol Rev. 2015 Dec 23;80(1):91-138. doi: 10.1128/MMBR.00037-15. Print 2016 Mar.
9
dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering.
Bioinformatics. 2015 Nov 15;31(22):3718-20. doi: 10.1093/bioinformatics/btv428. Epub 2015 Jul 23.
10
The dual role of microbes in corrosion.
ISME J. 2015 Mar;9(3):542-51. doi: 10.1038/ismej.2014.169. Epub 2014 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验