Suppr超能文献

预测乳腺叶状肿瘤的病理分级:基于临床和磁共振成像特征的列线图。

Predicting the pathological grade of breast phyllodes tumors: a nomogram based on clinical and magnetic resonance imaging features.

机构信息

Department of Radiology, Fudan University Shanghai Cancer Center, Xuhui, Shanghai, China.

Department of Oncology, Fudan University Shanghai Cancer Center, Xuhui, Shanghai, China.

出版信息

Br J Radiol. 2021 Aug 1;94(1124):20210342. doi: 10.1259/bjr.20210342. Epub 2021 Jul 8.

Abstract

OBJECTIVE

To explore the potential factors related to the pathological grade of breast phyllodes tumors (PTs) and to establish a nomogram to improve their differentiation ability.

METHODS

Patients with PTs diagnosed by post-operative pathology who underwent pretreatment magnetic resonance imaging (MRI) from January 2015 to June 2020 were retrospectively reviewed. Traditional clinical features and MRI features evaluated according to the fifth BI-RADS were analyzed by statistical methods and introduced to a stepwise multivariate logistic regression analysis to develop a prediction model. Then, a nomogram was developed to graphically predict the probability of non-benign (borderline/malignant) PTs.

RESULTS

Finally, 61 benign, 73 borderline and 48 malignant PTs were identified in 182 patients. Family history of tumor, diameter, lobulation, cystic component, signal on fat saturated weighted imaging (FS WI), BI-RADS category and time-signal intensity curve (TIC) patterns were found to be significantly different between benign and non-benign PTs. The nomogram was finally developed based on five risk factors: family history of tumor, lobulation, cystic component, signal on FS WI and internal enhancement. The AUC of the nomogram was 0.795 (95% CI: 0.639, 0.835).

CONCLUSION

Family history of tumor, lobulation, cystic components, signals on FS WI and internal enhancement are independent predictors of non-benign PTs. The prediction nomogram developed based on these features can be used as a supplemental tool to pre-operatively differentiate PTs grades.

ADVANCES IN KNOWLEDGE

More sample size and characteristics were used to explore the factors related to the pathological grade of PTs and establish a predictive nomogram for the first time.

摘要

目的

探讨与乳腺叶状肿瘤(PTs)病理分级相关的潜在因素,并建立列线图以提高其鉴别能力。

方法

回顾性分析 2015 年 1 月至 2020 年 6 月接受术前磁共振成像(MRI)检查且术后病理诊断为 PTs 的患者。统计方法分析传统临床特征和根据第五版 BI-RADS 评估的 MRI 特征,并将其引入逐步多因素逻辑回归分析,以建立预测模型。然后,开发一个列线图来直观预测非良性(交界性/恶性)PTs 的概率。

结果

最终在 182 名患者中确定了 61 例良性、73 例交界性和 48 例恶性 PTs。良性与非良性 PTs 之间,肿瘤家族史、直径、分叶、囊性成分、FSWI 上的信号、BI-RADS 类别和时间信号强度曲线(TIC)模式有显著差异。最终基于 5 个风险因素:肿瘤家族史、分叶、囊性成分、FSWI 上的信号和内部强化,开发了一个列线图。该列线图的 AUC 为 0.795(95%CI:0.639,0.835)。

结论

肿瘤家族史、分叶、囊性成分、FSWI 上的信号和内部强化是预测非良性 PTs 的独立因素。基于这些特征建立的预测列线图可作为术前鉴别 PTs 分级的辅助工具。

知识进展

本研究使用更大的样本量和特征,首次探讨了与 PTs 病理分级相关的因素,并建立了预测列线图。

相似文献

2
Can whole-tumor apparent diffusion coefficient histogram analysis be helpful to evaluate breast phyllode tumor grades?
Eur J Radiol. 2019 May;114:25-31. doi: 10.1016/j.ejrad.2019.02.035. Epub 2019 Feb 27.
4
Pretreatment Multiparametric MRI-Based Radiomics Analysis for the Diagnosis of Breast Phyllodes Tumors.
J Magn Reson Imaging. 2023 Feb;57(2):633-645. doi: 10.1002/jmri.28286. Epub 2022 Jun 3.
6
Mammography-based radiomics analysis and imaging features for predicting the malignant risk of phyllodes tumours of the breast.
Clin Radiol. 2023 May;78(5):e386-e392. doi: 10.1016/j.crad.2023.01.017. Epub 2023 Feb 18.
7
Recurrence prediction for breast phyllodes tumours: validation of the Singapore nomogram in Korean women.
J Clin Pathol. 2022 Mar;75(3):159-163. doi: 10.1136/jclinpath-2020-207093. Epub 2020 Dec 29.
8
Clinical presentation and radiologic imaging findings of phyllodes tumors: benign and borderline/malignant phyllodes tumors.
F1000Res. 2024 May 28;13:210. doi: 10.12688/f1000research.145872.2. eCollection 2024.
9
Imaging findings in phyllodes tumors of the breast.
Eur J Radiol. 2012 Jan;81(1):e62-9. doi: 10.1016/j.ejrad.2011.01.085. Epub 2011 Feb 25.
10
Differentiation between benign phyllodes tumors and fibroadenomas of the breast on MR imaging.
Eur J Radiol. 2014 Aug;83(8):1344-9. doi: 10.1016/j.ejrad.2014.04.031. Epub 2014 May 9.

引用本文的文献

1
Expression of amine oxidase-related proteins in breast phyllodes tumor.
Histol Histopathol. 2025 Jan;40(1):39-47. doi: 10.14670/HH-18-773. Epub 2024 Jun 4.
3
Prognostic factors of breast phyllodes tumors.
Histol Histopathol. 2023 Aug;38(8):865-878. doi: 10.14670/HH-18-600. Epub 2023 Feb 27.
4
An Update on the General Features of Breast Cancer in Male Patients-A Literature Review.
Diagnostics (Basel). 2022 Jun 26;12(7):1554. doi: 10.3390/diagnostics12071554.
5
Editorial for "Pretreatment Multiparametric MRI-Based Radiomics Analysis for the Diagnosis of Breast Phyllodes Tumors".
J Magn Reson Imaging. 2023 Feb;57(2):646-647. doi: 10.1002/jmri.28285. Epub 2022 Jun 5.

本文引用的文献

2
Phyllodes Tumors-The Predictors and Detection of Recurrence.
Can Assoc Radiol J. 2021 May;72(2):251-257. doi: 10.1177/0846537119899553. Epub 2020 Feb 24.
3
A Pre-operative Score to Discriminate Fibroepithelial Lesions of the Breast: Phyllode Tumor or Fibroadenoma?
Anticancer Res. 2020 Feb;40(2):1095-1100. doi: 10.21873/anticanres.14048.
4
Phyllodes tumor of the breast: diagnosis, management and outcome during a 10-year experience.
Cancer Manag Res. 2019 Aug 19;11:7805-7811. doi: 10.2147/CMAR.S215039. eCollection 2019.
8
Malignant phyllodes tumors of the breast: A comprehensive literature review.
Breast J. 2020 Feb;26(2):240-244. doi: 10.1111/tbj.13523. Epub 2019 Sep 3.
9
Nomogram for predicting the overall survival of patients with inflammatory breast cancer: A SEER-based study.
Breast. 2019 Oct;47:56-61. doi: 10.1016/j.breast.2019.05.015. Epub 2019 Jul 17.
10
Differentiation Between G1 and G2/G3 Phyllodes Tumors of Breast Using Mammography and Mammographic Texture Analysis.
Front Oncol. 2019 May 29;9:433. doi: 10.3389/fonc.2019.00433. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验