基于超声的放射组学列线图:预测早期浸润性乳腺癌腋窝淋巴结转移的潜在生物标志物。

Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer.

机构信息

Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Department of Ultrasound, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China.

出版信息

Eur J Radiol. 2019 Oct;119:108658. doi: 10.1016/j.ejrad.2019.108658. Epub 2019 Sep 7.

Abstract

PURPOSE

To establish a radiomics nomogram integrating clinical factors and radiomics features from ultrasound for the preoperative diagnosis axillary lymph node (ALN) status in patients with early-stage invasive breast cancer (EIBC).

MATERIALS AND METHODS

Between September 2016 and December 2018, four hundred twenty-six ultrasound manually segmented images of patients with EIBC were enrolled in our retrospective study, which were divided into a primary cohort (n = 300) and a validation cohort (n = 126). A radiomics signature was built with the least absolute shrinkage and selection operator (LASSO) algorithm in the primary cohort. Multivariable logistic regression analysis was used to establish a radiomics nomogram model based on radiomics signature and clinical variables. The performance of nomogram was quantified with respect to discrimination and calibration. The radiomics model was further evaluated in the internal validation cohort.

RESULTS

The radiomics signature, consisted of fourteen selected ALN-status-related features, achieved moderate prediction efficacy with an area under the curve (AUC) of 0.78 and 0.71 in the primary and validation cohorts respectively. The radiomics nomogram, comprising tumor size, US-reported LN status and radiomics signature, showed good calibration and favorite performance for ALN detection (AUC 0.84 and 0.81 in the primary and validation cohort). The decision curve which was demonstrated the radiomics nomogram displayed good clinical utility.

CONCLUSION

The radiomics nomogram could hold promise as a non-invasive and reliable tool in predicting ALN metastasis and may facilitate to develop more effective preoperative decision-making.

摘要

目的

建立一个结合临床因素和超声影像组学特征的影像组学列线图,用于预测早期浸润性乳腺癌(EIBC)患者腋窝淋巴结(ALN)状态。

材料与方法

本回顾性研究纳入了 2016 年 9 月至 2018 年 12 月期间的 426 例 EIBC 患者的超声手动分割图像,将其分为主要队列(n=300)和验证队列(n=126)。在主要队列中,使用最小绝对收缩和选择算子(LASSO)算法构建影像组学特征。利用多变量逻辑回归分析基于影像组学特征和临床变量建立影像组学列线图模型。利用判别和校准来评估列线图模型的性能。进一步在内部验证队列中评估影像组学模型。

结果

由 14 个与 ALN 状态相关的特征组成的影像组学特征具有中等预测效能,在主要和验证队列中的曲线下面积(AUC)分别为 0.78 和 0.71。包含肿瘤大小、超声报告的淋巴结状态和影像组学特征的影像组学列线图显示出良好的校准度和对 ALN 检测的优异性能(在主要和验证队列中的 AUC 分别为 0.84 和 0.81)。列线图的决策曲线显示了其良好的临床实用性。

结论

影像组学列线图有望成为预测 ALN 转移的一种非侵入性且可靠的工具,并可能有助于制定更有效的术前决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索