State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China.
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology and Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, P. R. China.
Environ Sci Technol. 2021 Aug 3;55(15):10811-10820. doi: 10.1021/acs.est.0c08395. Epub 2021 Jul 8.
Algal blooms bring massive amounts of algal organic matter (AOM) into eutrophic lakes, which influences microbial methylmercury (MeHg) production. However, because of the complexity of AOM and its dynamic changes during algal decomposition, the relationship between AOM and microbial Hg methylators remains poorly understood, which hinders predicting MeHg production and its bioaccumulation in eutrophic shallow lakes. To address that, we explored the impacts of AOM on microbial Hg methylators and MeHg production by characterizing dissolved organic matter with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and quantifying the microbial Hg methylation gene . We first reveal that the predominance of methanogens, facilitated by eutrophication-induced carbon input, could drive MeHg production in lake water. Specifically, bioavailable components of AOM (, CHONs such as aromatic proteins and soluble microbial byproduct-like materials) increased the abundances (Archaea- gene: 438-2240% higher) and activities (net CH production: 16.0-44.4% higher) of Archaea (, methanogens). These in turn led to enhanced dissolved MeHg levels (24.3-15,918% higher) for three major eutrophic shallow lakes in China. Nevertheless, our model results indicate that AOM-facilitated MeHg production could be offset by AOM-induced MeHg biodilution under eutrophication. Our study would help reduce uncertainties in predicting MeHg production, providing a basis for mitigating the MeHg risk in eutrophic lakes.
藻类大量繁殖将大量的藻类有机质(AOM)带入富营养化湖泊,从而影响微生物甲基汞(MeHg)的产生。然而,由于 AOM 的复杂性及其在藻类分解过程中的动态变化,AOM 与微生物 Hg 甲基化菌之间的关系仍不清楚,这阻碍了对富营养化浅水湖中 MeHg 产生及其生物累积的预测。为了解决这个问题,我们通过傅里叶变换离子回旋共振质谱(FTICR-MS)和三维激发-发射矩阵(3D-EEM)荧光光谱对溶解有机物质进行了表征,并定量了微生物 Hg 甲基化基因,从而探究了 AOM 对微生物 Hg 甲基化菌和 MeHg 产生的影响。我们首先揭示了富营养化诱导的碳输入促进产甲烷菌的优势,从而可以驱动湖水的 MeHg 产生。具体来说,AOM 的生物可利用成分(如芳香族蛋白和可溶性微生物副产物样物质等 CHONs)增加了古菌(Archaea- 基因:高 438-2240%)的丰度和活性(净 CH 产生:高 16.0-44.4%)。这反过来又导致中国三个主要富营养化浅水湖中溶解 MeHg 水平升高(高 24.3-15918%)。然而,我们的模型结果表明,在富营养化条件下,AOM 促进的 MeHg 产生可能会被 AOM 诱导的 MeHg 生物稀释所抵消。我们的研究将有助于减少预测 MeHg 产生的不确定性,为减轻富营养化湖泊中 MeHg 风险提供依据。