Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Langmuir. 2021 Jul 20;37(28):8463-8473. doi: 10.1021/acs.langmuir.1c00868. Epub 2021 Jul 8.
Ion-specific induced changes of the ζ-potential of phospholipid vesicles are commonly used to quantify the affinity of different ions to the lipid interface. The negative ζ-potential of zwitterionic net-neutral phospholipid vesicles in neat water, which changes sign and increases in solutions of NaCl or KCl, is a phenomenon consistently observed in experiments but not fully understood theoretically. Using atomistic molecular dynamics simulations in the presence of applied electric fields which drive electroosmotic flows, in combination with an electrostatic continuum model based on the modified Poisson-Boltzmann and Helmholtz-Smoluchowski equations, we study the electrokinetic and electrostatic properties as well as the specific ion affinities to the phospholipid-water interface, in order to resolve these puzzling observations. Our modified continuum equations account for the dielectric profile at the lipid-water interface, ion-specific interactions between ions and the lipid-water interface, and the interfacial viscosity profile, which are all extracted from our atomistic simulations and rather accurately predict ion-density and electrostatic-potential distributions as well as ζ-potentials in comparison with our atomistic simulations. Our continuum model can explain experimental ζ-potentials only when we assume minute amounts of surface-active anionic impurities in the aqueous solution. In fact, the amount of impurities needed to explain the experimental data increases linearly with the salt concentration, suggesting that surface-active species, which might be already present in the lab water or lipid samples, could further be introduced through the added salt.
离子特异性诱导磷脂囊泡ζ电位的变化通常用于定量不同离子与脂质界面的亲和力。在纯净水中,两性离子净中性磷脂囊泡的负 ζ 电位发生变化,符号发生变化,并在 NaCl 或 KCl 溶液中增加,这是实验中一致观察到的现象,但在理论上尚未完全理解。我们使用存在外加电场的原子分子动力学模拟,该电场驱动电动流动,结合基于修正的泊松-玻尔兹曼和亥姆霍兹-斯莫卢霍夫斯基方程的静电连续体模型,研究电动和静电特性以及特定离子对磷脂-水界面的亲和力,以解决这些令人困惑的观察结果。我们的修正连续体方程考虑了脂质-水界面的介电轮廓、离子与脂质-水界面之间的离子特异性相互作用以及界面粘度轮廓,所有这些都是从我们的原子模拟中提取的,并且可以相当准确地预测离子密度和静电势分布以及与我们的原子模拟相比的 ζ 电位。只有当我们假设水溶液中存在微量的表面活性阴离子杂质时,我们的连续体模型才能解释实验 ζ 电位。事实上,解释实验数据所需的杂质量随盐浓度线性增加,这表明表面活性物质可能已经存在于实验室水中或脂质样品中,也可能通过添加的盐进一步引入。