Suppr超能文献

超越 D-二聚体 - 机器学习辅助下对疑似肺栓塞且 D-二聚体升高患者的术前概率评估。

Beyond the d-dimer - Machine-learning assisted pre-test probability evaluation in patients with suspected pulmonary embolism and elevated d-dimers.

机构信息

Clinic of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany.

Clinic of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany.

出版信息

Thromb Res. 2021 Sep;205:11-16. doi: 10.1016/j.thromres.2021.07.001. Epub 2021 Jul 2.

Abstract

INTRODUCTION

Acute pulmonary embolism (PE) is a leading cardiovascular cause of death, resembling a common indication for emergency computed tomography (CT). Nonetheless, in clinical routine most CTs performed for suspicion of PE excluded the suspected diagnosis. As patients with low to intermediate risk for PE are triaged according to the d-dimer, its relatively low specifity and widespread elevation among elderly might be an underlying issue. Aim of this study was to find potential predictors based on initial emergency blood tests in patients with elevated d-dimers and suspected PE to further increase pre-test probability.

METHODS

In this retrospective study all patients at the local university hospital's emergency room from 2009 to 2019 with suspected PE, emergency blood testing and CT were included. Cluster analysis was performed to separate groups with distinct laboratory parameter profiles and PE frequencies were compared. Machine learning algorithms were trained on the groups to predict individual PE probability based on emergency laboratory parameters.

RESULTS

Overall, PE frequency among the 2045 analyzed patients was 41%. Three clusters with significant differences (p ≤ 0.05) in PE frequency were identified: C1 showed a PE frequency of 43%, C2 40% and C3 33%. Laboratory parameter profiles (e.g. creatinine) differed significantly between clusters (p ≤ 0.0001). Both logistic regression and support-vector machines were able to predict clusters with an accuracy of over 90%.

DISCUSSION

Initial blood parameters seem to enable further differentiation of patients with suspected PE and elevated d-dimers to raise pre-test probability of PE. Machine-learning-based prediction models might help to further narrow down CT indications in the future.

摘要

简介

急性肺栓塞(PE)是导致心血管死亡的主要原因之一,与急诊计算机断层扫描(CT)的常见适应证相似。然而,在临床常规中,大多数因怀疑 PE 而行的 CT 检查都排除了可疑诊断。由于低至中度 PE 风险的患者根据 D-二聚体进行分诊,其在老年人中的相对较低特异性和广泛升高可能是一个潜在问题。本研究的目的是寻找基于初始急诊血液检查的潜在预测因子,以进一步提高具有升高 D-二聚体和可疑 PE 的患者的检测前概率。

方法

在这项回顾性研究中,纳入了 2009 年至 2019 年期间在当地大学医院急诊室因怀疑 PE 而进行急诊血液检查和 CT 的所有患者。采用聚类分析将具有不同实验室参数特征的组分开,并比较各组的 PE 发生率。在组上训练机器学习算法,根据急诊实验室参数预测个体的 PE 概率。

结果

在分析的 2045 例患者中,PE 发生率为 41%。确定了三个具有显著差异(p ≤ 0.05)的 PE 发生率的聚类:C1 的 PE 发生率为 43%,C2 为 40%,C3 为 33%。聚类之间的实验室参数特征(如肌酐)有显著差异(p ≤ 0.0001)。逻辑回归和支持向量机都能够以超过 90%的准确率预测聚类。

讨论

初始血液参数似乎能够进一步区分疑似 PE 和 D-二聚体升高的患者,以提高 PE 的检测前概率。基于机器学习的预测模型可能有助于未来进一步缩小 CT 适应证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验