Yaakov Gilad, Jonas Felix, Barkai Naama
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Nat Biotechnol. 2021 Nov;39(11):1434-1443. doi: 10.1038/s41587-021-00959-8. Epub 2021 Jul 8.
Histone exchange between histones carrying position-specific marks and histones bearing general marks is important for gene regulation, but understanding of histone exchange remains incomplete. To overcome the poor time resolution of conventional pulse-chase histone labeling, we present a genetically encoded histone exchange timer sensitive to the duration that two tagged histone subunits co-reside at an individual genomic locus. We apply these sensors to map genome-wide patterns of histone exchange in yeast using single samples. Comparing H3 exchange in cycling and G1-arrested cells suggests that replication-independent H3 exchange occurs at several hundred nucleosomes (<1% of all nucleosomes) per minute, with a maximal rate at histone promoters. We observed substantial differences between the two nucleosome core subcomplexes: H2A-H2B subcomplexes undergo rapid transcription-dependent replacement within coding regions, whereas H3-H4 replacement occurs predominantly within promoter nucleosomes, in association with gene activation or repression. Our timers allow the in vivo study of histone exchange dynamics with minute time scale resolution.
携带位置特异性标记的组蛋白与带有一般标记的组蛋白之间的组蛋白交换对于基因调控很重要,但对组蛋白交换的理解仍不完整。为了克服传统脉冲追踪组蛋白标记时间分辨率差的问题,我们提出了一种基因编码的组蛋白交换定时器,它对两个标记的组蛋白亚基在单个基因组位点共定位的持续时间敏感。我们应用这些传感器,使用单个样本绘制酵母中全基因组范围的组蛋白交换模式。比较循环细胞和G1期停滞细胞中的H3交换表明,不依赖复制的H3交换每分钟发生在数百个核小体上(占所有核小体的不到1%),在组蛋白启动子处速率最高。我们观察到两个核小体核心亚复合物之间存在显著差异:H2A-H2B亚复合物在编码区内经历快速的转录依赖性替换,而H3-H4替换主要发生在启动子核小体中,与基因激活或抑制相关。我们的定时器允许在体内以分钟时间尺度分辨率研究组蛋白交换动力学。