Suppr超能文献

前苏联入侵性外来条纹田鼠(Pall.)的聚集出现记录。

Aggregated occurrence records of the invasive alien striped field mouse ( Pall.) in the former USSR.

作者信息

Khlyap Lyudmila A, Dinets Vladimir, Warshavsky Andrey A, Osipov Fedor A, Dergunova Natalia N, Petrosyan Varos G

机构信息

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia.

University of Tennessee, Knoxville, United States of America University of Tennessee Knoxville United States of America.

出版信息

Biodivers Data J. 2021 Jun 22;9:e69159. doi: 10.3897/BDJ.9.e69159. eCollection 2021.

Abstract

BACKGROUND

Open access to occurrence records of the most dangerous invasive species in a standardised format have important potential applications for ecological research and management, including the assessment of invasion risks, formulation of preventative and management plans in the context of global climate and land use changes in the short and long perspective. The striped field mouse ( Pallas, 1771) is a common species in the temperate latitudes of the Palaearctic. Due to land use and global climate changes, several waves of expansion of the range of this species have been observed or inferred. By intrusion into new regions, the striped field mouse has become an alien species there. causes significant harm to agriculture and is one of the most important pests of grain crops. In tree nurseries, destroys seeds of valuable tree species and gnaws at the bark of saplings of broadleaf species and berry bushes. It is one of the most epidemiologically important rodents, involved in the circulation of the causative agents of haemorrhagic fever with renal syndrome (HFRS) and many other zoonotic infections. The foregoing allows us to classify the striped field mouse as a dangerous invasive alien species in the expanding part of the range. A lot of data accumulated for this species are of interest from both ecological and applied points of view. The accumulation and aggregation of data on the occurrence records of is relevant for the study of ecology, biogeography and construction of the spatial distribution and ecological niche models in the context of global climate change. We have created a dataset of 1603 occurrence records of this species, collected from 1936 to December 2020 by various zoologists, previously published or original. These records relate to a significant part of the striped field mouse's range in Russia (1264 records) and neighbouring countries (339 records). The dataset shows the position of the northern and central parts of range, the disjunction of the range in Transbaikalia and isolated populations in the north of the range. The data were obtained in different formats from literature, indicating different degrees of accuracy of geographic coordinates and with several variations of the species' name. In the process of aggregating and fixing errors, we created a set of georeferenced occurrence records, adopted a controlled vocabulary, removed duplicates and standardised the format of records using unified data structure. We examined the dataset for inconsistencies with the taxonomic position of and removed the incorrect records. This paper presents the resulting dataset of occurrence records in the territory of Russia and neighbouring countries in a standardised format.

NEW INFORMATION

This is a validated and comprehensive dataset of occurrence records of , including both our own observations and records from literature. This dataset is available for extension by other researchers using a standard format in accordance with Darwin Core standards. In different countries, there are a lot of occurrence records for the striped field mouse, but the overwhelming part of them is presented in separate literary sources, stored in the form of maps and in zoological collections. Prior to this project, such information was not available to a wide range of researchers and did not allow the use of these spatial data for further processing by modern methods of analysis, based on geographic information systems (GIS technologies). The created dataset combines species occurrence records of many Soviet zoologists who studied the distribution of the striped field mouse over a significant part of its recent range, in Russia and neighbouring countries (within the former USSR). The final set of records was created by combining the species occurrence records using a uniform data structure, checking geographic coordinates and removing duplicate and erroneous records. The dataset expands the available information on the spatial and temporal distribution of the dangerous invasive species in Russia and neighbouring countries of the former USSR (Estonia, Latvia, Lithuania, Belarus, Ukraine, Moldova, Georgia, Azerbaijan, Kazakhstan and Kyrgyzstan).

摘要

背景

以标准化格式开放获取最危险入侵物种的出现记录,对于生态研究和管理具有重要的潜在应用价值,包括评估入侵风险、在全球气候和土地利用变化的短期和长期背景下制定预防和管理计划。条纹田鼠(帕拉斯,1771年)是古北界温带地区的常见物种。由于土地利用和全球气候变化,已观察到或推断出该物种分布范围有几次扩张浪潮。通过侵入新地区,条纹田鼠在那里成为外来物种。它对农业造成重大危害,是谷物作物最重要的害虫之一。在树木苗圃中,它会破坏珍贵树种的种子,并啃食阔叶树种和浆果灌木树苗的树皮。它是流行病学上最重要的啮齿动物之一,参与肾综合征出血热(HFRS)病原体及许多其他人畜共患病感染的传播。上述情况使我们能够将条纹田鼠归类为分布范围扩张区域内的危险入侵外来物种。从生态和应用角度来看,为该物种积累的大量数据都很有价值。积累和汇总条纹田鼠出现记录的数据,对于在全球气候变化背景下研究生态学、生物地理学以及构建空间分布和生态位模型具有重要意义。我们创建了一个包含1603条该物种出现记录的数据集,这些记录是由不同的动物学家在1936年至2020年12月期间收集的,包括先前已发表的和原始的记录。这些记录涉及俄罗斯(1264条记录)和邻国(339条记录)条纹田鼠分布范围的很大一部分。该数据集显示了其分布范围北部和中部的位置、外贝加尔地区分布范围的间断以及分布范围北部的孤立种群。数据以不同格式从文献中获取,地理坐标的精度不同,物种名称也有几种变体。在汇总和修正错误的过程中,我们创建了一组地理参考出现记录,采用了受控词汇表,去除了重复项,并使用统一的数据结构对记录格式进行了标准化。我们检查了数据集与条纹田鼠分类地位的一致性,并删除了不正确的记录。本文以标准化格式呈现了俄罗斯及邻国境内条纹田鼠出现记录的最终数据集。

新信息

这是一个经过验证的、全面的条纹田鼠出现记录数据集,包括我们自己的观察结果和文献记录。该数据集可供其他研究人员按照达尔文核心标准使用标准格式进行扩展。在不同国家,有许多条纹田鼠的出现记录,但其中绝大多数分散在单独的文献资料中,以地图形式存储或保存在动物学收藏中。在本项目之前,广大研究人员无法获取此类信息,也无法利用这些空间数据通过基于地理信息系统(GIS技术)的现代分析方法进行进一步处理。创建的数据集整合了许多苏联动物学家的物种出现记录,他们研究了条纹田鼠在其近期分布范围的很大一部分,即俄罗斯和邻国(前苏联境内)的分布情况。最终的记录集是通过使用统一的数据结构合并物种出现记录、检查地理坐标并去除重复和错误记录而创建的。该数据集扩展了关于俄罗斯及前苏联邻国(爱沙尼亚、拉脱维亚、立陶宛、白俄罗斯、乌克兰、摩尔多瓦、格鲁吉亚、阿塞拜疆、哈萨克斯坦和吉尔吉斯斯坦)危险入侵物种时空分布的可用信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c172/8245395/57474e7dffda/bdj-09-e69159-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验