Suppr超能文献

利用漫反射技术和机器学习方法对结直肠癌进行离体鉴别。

Diffuse reflectance and machine learning techniques to differentiate colorectal cancer ex vivo.

机构信息

Center for Innovation in Engineering and Industrial Technology, Polytechnic of Porto-School of Engineering, 4249-015 Porto, Portugal.

Department of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.

出版信息

Chaos. 2021 May;31(5):053118. doi: 10.1063/5.0052088.

Abstract

In this study, we used machine learning techniques to reconstruct the wavelength dependence of the absorption coefficient of human normal and pathological colorectal mucosa tissues. Using only diffuse reflectance spectra from the ex vivo mucosa tissues as input to algorithms, several approaches were tried before obtaining good matching between the generated absorption coefficients and the ones previously calculated for the mucosa tissues from invasive experimental spectral measurements. Considering the optimized match for the results generated with the multilayer perceptron regression method, we were able to identify differentiated accumulation of lipofuscin in the absorption coefficient spectra of both mucosa tissues as we have done before with the corresponding results calculated directly from invasive measurements. Considering the random forest regressor algorithm, the estimated absorption coefficient spectra almost matched the ones previously calculated. By subtracting the absorption of lipofuscin from these spectra, we obtained similar hemoglobin ratios at 410/550 nm: 18.9-fold/9.3-fold for the healthy mucosa and 46.6-fold/24.2-fold for the pathological mucosa, while from direct calculations, those ratios were 19.7-fold/10.1-fold for the healthy mucosa and 33.1-fold/17.3-fold for the pathological mucosa. The higher values obtained in this study indicate a higher blood content in the pathological samples used to measure the diffuse reflectance spectra. In light of such accuracy and sensibility to the presence of hidden absorbers, with a different accumulation between healthy and pathological tissues, good perspectives become available to develop minimally invasive spectroscopy methods for in vivo early detection and monitoring of colorectal cancer.

摘要

在这项研究中,我们使用机器学习技术来重建人正常和病理结直肠黏膜组织的吸收系数的波长依赖性。仅将离体黏膜组织的漫反射光谱作为算法的输入,在获得与先前通过侵入性实验光谱测量计算出的黏膜组织吸收系数良好匹配之前,尝试了几种方法。考虑到使用多层感知器回归方法生成的结果的优化匹配,我们能够识别出在两种黏膜组织的吸收系数光谱中脂褐素的差异积累,就像我们之前使用直接从侵入性测量计算出的相应结果所做的那样。对于随机森林回归算法,估计的吸收系数光谱几乎与先前计算出的光谱相匹配。通过从这些光谱中减去脂褐素的吸收,我们获得了类似的血红蛋白比值在 410/550nm 处:健康黏膜为 18.9 倍/9.3 倍,病理黏膜为 46.6 倍/24.2 倍,而直接计算的结果为健康黏膜 19.7 倍/10.1 倍,病理黏膜 33.1 倍/17.3 倍。在这项研究中获得的更高值表明用于测量漫反射光谱的病理样本中血液含量更高。鉴于这种准确性和对隐藏吸收剂存在的敏感性,以及健康组织和病理组织之间的不同积累,为开发用于结直肠癌体内早期检测和监测的微创光谱学方法提供了良好的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验