Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia.
Serbian Academy of Sciences and Arts (SASA), Belgrade, Serbia.
Biomed Tech (Berl). 2021 Jul 12;66(5):449-457. doi: 10.1515/bmt-2020-0307. Print 2021 Oct 26.
The gait assessment is instrumental for evaluating the efficiency of rehabilitation of persons with a motor impairment of the lower extremities. The protocol for quantifying the gait performance needs to be simple and easy to implement; therefore, a wearable system and user-friendly computer program are preferable. We used the Gait Master (instrumented insoles) with the industrial quality ground reaction forces (GRF) sensors and 6D inertial measurement units (IMU). WiFi transmitted 10 signals from the GRF sensors and 12 signals from the accelerometers and gyroscopes to the host computer. The clinician was following in real-time the acquired data to be assured that the WiFi operated correctly. We developed a method that uses principal component analysis (PCA) to provide a clinician with easy to interpret cyclograms showing the difference between the recorded and healthy-like gait performance. The cyclograms formed by the first two principal components in the PCA space show the step-to-step reproducibility. We suggest that a cyclogram and its orientation to the coordinate system PC1 vs. PC2 allow a simple assessment of the gait. We show results for six healthy persons and five patients with hemiplegia.
步态评估对于评估下肢运动障碍患者的康复效率至关重要。用于量化步态表现的方案需要简单易用;因此,可穿戴系统和用户友好的计算机程序是首选。我们使用步态大师(带仪器的鞋垫)和工业质量地面反作用力(GRF)传感器以及 6D 惯性测量单元(IMU)。WiFi 将来自 GRF 传感器的 10 个信号和来自加速度计和陀螺仪的 12 个信号传输到主机。临床医生实时跟踪采集的数据,以确保 WiFi 运行正常。我们开发了一种使用主成分分析(PCA)的方法,为临床医生提供易于解释的周期图,显示记录的和健康样的步态表现之间的差异。PCA 空间中的前两个主成分形成的周期图显示了逐步的可重复性。我们建议周期图及其相对于 PC1 与 PC2 坐标系的方向允许对步态进行简单评估。我们展示了六位健康人和五位偏瘫患者的结果。