Player G, Clary R, Dettrick S, Korepanov S, Magee R M, Tajima T
TAE Technologies, Foothill Ranch, California 92610, USA.
Rev Sci Instrum. 2021 May 1;92(5):053542. doi: 10.1063/5.0043868.
In TAE Technologies' current experimental device, C-2W, neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. Diagnosis of these fast ions is therefore critical for understanding the behavior of the FRC. Neutral Particle Analyzers (NPAs) are used to measure the energy spectrum of fast ions that charge exchange on background or beam neutrals and are lost from the plasma. To ensure correct diagnosis of the fast ion population, a calibration check of the NPAs was performed. A novel, generally applicable method for an in situ relative calibration of diagnostics on an unknown source with a small dataset was developed. The method utilizes a machine learning technique, Generalized Additive Models (GAMs), to reconstruct the diagnostic source distribution, and Stochastic Gradient Descent (SGD) to determine the NPA channel calibration factors. The results on both synthetic and experimental datasets are presented.
在TAE Technologies公司目前的实验装置C-2W中,中性束注入产生了大量的快离子群体,维持着场反向配置(FRC)等离子体。因此,对这些快离子进行诊断对于理解FRC的行为至关重要。中性粒子分析仪(NPA)用于测量快离子的能谱,这些快离子在背景或束流中性粒子上发生电荷交换并从等离子体中损失。为确保对快离子群体进行正确诊断,对NPA进行了校准检查。开发了一种新颖的、普遍适用的方法,用于在数据集较小的未知源上对诊断进行原位相对校准。该方法利用机器学习技术广义相加模型(GAM)来重建诊断源分布,并利用随机梯度下降(SGD)来确定NPA通道校准因子。给出了合成数据集和实验数据集的结果。