Chang Lulu, Lu Hengqian, Chen Haiqin, Tang Xin, Zhao Jianxin, Zhang Hao, Chen Yong Q, Chen Wei
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Biotechnol Adv. 2022 Jan-Feb;54:107794. doi: 10.1016/j.biotechadv.2021.107794. Epub 2021 Jul 8.
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
产油真菌高山被孢霉在长链多不饱和脂肪酸(PUFAs)生产方面具有显著优势,是美国食品药品监督管理局(FDA)和欧盟委员会认证的膳食花生四烯酸(ARA)的唯一来源。本文综述全面介绍了高山被孢霉,包括其主要研究方法、脂质生物合成的关键调控因子、代谢工程和组学研究。目前,对高山被孢霉的研究兴趣集中在通过增强脂肪酸前体和还原力NADPH来提高脂质产量和脂肪酸去饱和度,并对多不饱和脂肪酸合成途径进行基因操作以优化脂肪酸组成。此外,多组学研究已被应用于阐明高山被孢霉脂肪生成的全局调控机制。然而,由于多核菌丝体、发酵周期长和碳到脂质的转化率不足,实现脂质细胞工厂面临的研究挑战在于菌株选育和成本控制。我们还基于多层次调控策略提出了未来的研究目标:通过定向进化和高通量筛选获得理想底盘;通过多基因操纵系统重新布线中心碳代谢并抑制竞争途径以提高碳到脂质的转化率;基于翻译后修饰优化蛋白质功能;应用适合不同发酵阶段的动态发酵策略。通过综述这种产油真菌的综合研究进展,我们旨在进一步理解真菌脂质代谢,并从基础研究到工业应用的角度为微生物油脂的开发提供参考信息和指导方针。