Suppr超能文献

T3SS 和鞭毛钩的稳健性与长度控制策略的进化。

Robustness and the evolution of length control strategies in the T3SS and flagellar hook.

机构信息

Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas.

Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas.

出版信息

Biophys J. 2021 Sep 7;120(17):3820-3830. doi: 10.1016/j.bpj.2021.05.032. Epub 2021 Jul 9.

Abstract

Bacterial cells construct many structures, such as the flagellar hook and the type III secretion system (T3SS) injectisome, that aid in crucial physiological processes such as locomotion and pathogenesis. Both of these structures involve long extracellular channels, and the length of these channels must be highly regulated in order for these structures to perform their intended functions. There are two leading models for how length control is achieved in the flagellar hook and T3SS needle: the substrate switching model, in which the length is controlled by assembly of an inner rod, and the ruler model, in which a molecular ruler controls the length. Although there is qualitative experimental evidence to support both models, comparatively little has been done to quantitatively characterize these mechanisms or make detailed predictions that could be used to unambiguously test these mechanisms experimentally. In this work, we constructed a mathematical model of length control based on the ruler mechanism and found that the predictions of this model are consistent with experimental data-not just for the scaling of the average length with the ruler protein length, but also for the variance. Interestingly, we found that the ruler mechanism allows for the evolution of needles with large average lengths without the concomitant large increase in variance that occurs in the substrate switching mechanism. In addition to making further predictions that can be tested experimentally, these findings shed new light on the trade-offs that may have led to the evolution of different length control mechanisms in different bacterial species.

摘要

细菌细胞构建了许多结构,如鞭毛钩和 III 型分泌系统(T3SS)注射器,这些结构有助于运动和发病等关键生理过程。这两种结构都涉及到长的细胞外通道,并且为了使这些结构发挥其预期的功能,这些通道的长度必须高度调节。有两种主要的模型可以解释鞭毛钩和 T3SS 针的长度控制机制:底物切换模型,其中长度通过内杆的组装来控制;以及标尺模型,其中分子标尺控制长度。尽管有定性的实验证据支持这两种模型,但相对而言,定量表征这些机制或做出详细的预测的工作做得还很少,这些预测可以用于明确地通过实验来测试这些机制。在这项工作中,我们基于标尺机制构建了一个长度控制的数学模型,发现该模型的预测与实验数据一致——不仅与标尺蛋白长度的平均长度缩放一致,而且与方差一致。有趣的是,我们发现标尺机制允许具有较大平均长度的针的进化,而不会发生在底物切换机制中发生的方差的相应较大增加。除了做出可以通过实验测试的进一步预测外,这些发现还揭示了可能导致不同细菌物种中不同长度控制机制进化的权衡。

相似文献

1
Robustness and the evolution of length control strategies in the T3SS and flagellar hook.
Biophys J. 2021 Sep 7;120(17):3820-3830. doi: 10.1016/j.bpj.2021.05.032. Epub 2021 Jul 9.
2
The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing.
J Biol Chem. 2016 Jan 22;291(4):1676-1691. doi: 10.1074/jbc.M115.684423. Epub 2015 Nov 20.
3
Reconstitution of Functional Type III Protein Export and Insights into Flagellar Assembly.
mBio. 2018 Jun 26;9(3):e00988-18. doi: 10.1128/mBio.00988-18.
4
Flagellar Hook/Needle Length Control and Secretion Control in Type III Secretion Systems.
Curr Top Microbiol Immunol. 2020;427:161-172. doi: 10.1007/82_2019_169.
5
An infrequent molecular ruler controls flagellar hook length in Salmonella enterica.
EMBO J. 2011 Jun 7;30(14):2948-61. doi: 10.1038/emboj.2011.185.
9
The role of the FliK molecular ruler in hook-length control in Salmonella enterica.
Mol Microbiol. 2010 Mar;75(5):1272-84. doi: 10.1111/j.1365-2958.2010.07050.x. Epub 2010 Feb 1.
10
The FliK protein and flagellar hook-length control.
Protein Sci. 2007 May;16(5):769-80. doi: 10.1110/ps.072785407.

本文引用的文献

1
T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly.
Nat Microbiol. 2019 Nov;4(11):2010-2019. doi: 10.1038/s41564-019-0545-z. Epub 2019 Aug 19.
2
Assembly, structure, function and regulation of type III secretion systems.
Nat Rev Microbiol. 2017 Jun;15(6):323-337. doi: 10.1038/nrmicro.2017.20. Epub 2017 Apr 10.
3
Mathematical Model for Length Control by the Timing of Substrate Switching in the Type III Secretion System.
PLoS Comput Biol. 2016 Apr 14;12(4):e1004851. doi: 10.1371/journal.pcbi.1004851. eCollection 2016 Apr.
5
SpringSaLaD: A Spatial, Particle-Based Biochemical Simulation Platform with Excluded Volume.
Biophys J. 2016 Feb 2;110(3):523-529. doi: 10.1016/j.bpj.2015.12.026.
6
Molecular ruler determines needle length for the Salmonella Spi-1 injectisome.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4098-103. doi: 10.1073/pnas.1423492112. Epub 2015 Mar 16.
7
The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):817-22. doi: 10.1073/pnas.1319698111. Epub 2013 Dec 30.
8
Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes.
PLoS Comput Biol. 2013;9(10):e1003278. doi: 10.1371/journal.pcbi.1003278. Epub 2013 Oct 10.
9
The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems.
PLoS Genet. 2012 Sep;8(9):e1002983. doi: 10.1371/journal.pgen.1002983. Epub 2012 Sep 27.
10
Atomic model of the type III secretion system needle.
Nature. 2012 May 20;486(7402):276-9. doi: 10.1038/nature11079.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验