Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
Nature. 2012 May 20;486(7402):276-9. doi: 10.1038/nature11079.
Pathogenic bacteria using a type III secretion system (T3SS) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies, resulting in low-resolution and medium-resolution models. However, such approaches cannot deliver atomic details, especially of the crucial subunit-subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.
利用 III 型分泌系统(T3SS)操纵宿主细胞的致病细菌会引起许多不同的感染,包括痢疾志贺氏菌、伤寒、肠出血性结肠炎和鼠疫。T3SS 的一个重要组成部分是一个中空的针状蛋白丝,效应蛋白通过它注入真核宿主细胞。目前,由于其固有的非晶态和不溶性,针的三维结构尚不清楚,不适合 X 射线晶体学和溶液 NMR。最近,冷冻电子显微镜与晶体或溶液 NMR 亚基结构的结合为研究超分子组装提供了一种强大的混合方法,得到了低分辨率和中分辨率的模型。然而,由于这些研究中获得的冷冻电子显微镜分辨率有限,这种方法无法提供原子细节,特别是关键亚基-亚基界面的原子细节。在这里,我们报告了一种结合重组野生型针生产、固态 NMR、电子显微镜和 Rosetta 建模的替代方法,以揭示超分子界面,并最终揭示沙门氏菌 T3SS 针的完整原子结构。我们表明,80 个残基的亚基形成一个右手螺旋组装,每两个环大约有 11 个亚基,类似于沙门氏菌鞭毛丝的结构。与针的现有模型不同,该模型假设蛋白质亚基的氨基末端是α-螺旋,并位于针内,而我们的模型则揭示了一个伸展的氨基末端结构,位于针的表面,而高度保守的羧基末端指向内腔。