Wang Wei, Huai Liyuan, Wu Shangyou, Shan Jiongwei, Zhu Junlu, Liu Zhonggang, Yue Liguo, Li Yunyong
School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
ACS Nano. 2021 Jul 27;15(7):11619-11633. doi: 10.1021/acsnano.1c02047. Epub 2021 Jul 12.
It is a significant challenge to design a dense high-sulfur-loaded cathode and meanwhile to acquire fast sulfur redox kinetics and suppress the heavy shuttling in the lean electrolyte, thus to acquire a high volumetric energy density without sacrificing gravimetric performance for realistic Li-S batteries (LSBs). Herein, we develop a cation-doping strategy to tailor the electronic structure and catalytic activity of MoSe that hybridized with conductive TiCT MXene, thus obtaining a Co-MoSe/MXene bifunctional catalyst as a high-efficient sulfur host. Combining a smart design of the dense sulfur structure, the as-fabricated highly dense S/Co-MoSe/MXene monolith cathode (density: 1.88 g cm, conductivity: 230 S m) achieves a high reversible specific capacity of 1454 mAh g and an ultrahigh volumetric energy density of 3659 Wh L at a routine electrolyte and a high areal capacity of ∼8.0 mAh cm under an extremely lean electrolyte of 3.5 μL mg at 0.1 C. Experimental and DFT theoretical results uncover that introducing Co element into the MoSe plane can form a shorter Co-Se bond, impel the Mo 3d band to approach the Fermi level, and provide strong interactions between polysulfides and Co-MoSe, thereby enhancing its intrinsic electronic conductivity and catalytic activity for fast redox kinetics and uniform LiS nucleation in a dense high-sulfur-loaded cathode. This deep work provides a good strategy for constructing high-volumetric-energy-density, high-areal-capacity LSBs with lean electrolytes.
设计一个高硫负载的致密阴极,同时实现快速的硫氧化还原动力学并抑制在贫电解质中的严重穿梭效应,从而在不牺牲实际锂硫电池(LSB)重量性能的情况下获得高体积能量密度,是一项重大挑战。在此,我们开发了一种阳离子掺杂策略,以调整与导电TiCT MXene杂化的MoSe的电子结构和催化活性,从而获得一种Co-MoSe/MXene双功能催化剂作为高效硫宿主。结合致密硫结构的巧妙设计,所制备的高度致密的S/Co-MoSe/MXene整体阴极(密度:1.88 g cm,电导率:230 S m)在常规电解质中实现了1454 mAh g的高可逆比容量和3659 Wh L的超高体积能量密度,在0.1 C下3.5 μL mg的极贫电解质下具有约8.0 mAh cm的高面积容量。实验和DFT理论结果表明,将Co元素引入MoSe平面可以形成更短的Co-Se键,促使Mo 3d能带接近费米能级,并提供多硫化物与Co-MoSe之间的强相互作用,从而提高其本征电子导电性和催化活性,实现致密高硫负载阴极中的快速氧化还原动力学和均匀的LiS成核。这项深入的工作为构建具有贫电解质的高体积能量密度、高面积容量的LSB提供了一个良好的策略。