Suppr超能文献

用过渡金属提升贫电解质锂硫电池性能:综述

Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review.

作者信息

Pan Hui, Cheng Zhibin, Zhou Zhenyu, Xie Sijie, Zhang Wei, Han Ning, Guo Wei, Fransaer Jan, Luo Jiangshui, Cabot Andreu, Wübbenhorst Michael

机构信息

Laboratory for Soft Matter and Biophysics, Faculty of Science, KU Leuven, 3001, Leuven, Belgium.

Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, People's Republic of China.

出版信息

Nanomicro Lett. 2023 Jun 29;15(1):165. doi: 10.1007/s40820-023-01137-y.

Abstract

Lithium-sulfur (Li-S) batteries have received widespread attention, and lean electrolyte Li-S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur (E/S) ratios on battery energy density and the challenges for sulfur reduction reactions (SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios (< 10 µL mg), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li-S battery performance. Finally, an outlook is provided to guide future research on high energy density Li-S batteries.

摘要

锂硫(Li-S)电池已受到广泛关注,而贫电解质锂硫电池因其更高的能量密度而引发了更多兴趣。本综述系统地分析了电解质与硫(E/S)比率对电池能量密度的影响以及贫电解质条件下硫还原反应(SRR)面临的挑战。相应地,我们综述了各种极性过渡金属硫宿主作为在低E/S比率(<10 µL mg)下促进SRR动力学的相应解决方案的应用,并从基础角度介绍和讨论了不同过渡金属化合物的优点和局限性。随后,提出了三种作为锚定物和催化剂的硫宿主的有前景策略,以提升贫电解质锂硫电池的性能。最后,给出了一个展望,以指导未来关于高能量密度锂硫电池的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/704e/10310691/f1e321a663f0/40820_2023_1137_Fig1_HTML.jpg

相似文献

1
3
Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.
Angew Chem Int Ed Engl. 2020 Jul 27;59(31):12636-12652. doi: 10.1002/anie.201909339. Epub 2020 Mar 17.
4
Carbonaceous-Material-Induced Gelation of Concentrated Electrolyte Solutions for Application in Lithium-Sulfur Battery Cathodes.
ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45403-45413. doi: 10.1021/acsami.2c12773. Epub 2022 Sep 29.
5
Cathode Kinetics Evaluation in Lean-Electrolyte Lithium-Sulfur Batteries.
J Am Chem Soc. 2023 Aug 2;145(30):16449-16457. doi: 10.1021/jacs.3c02786. Epub 2023 Jul 10.
6
Development of Electrolytes under Lean Condition in Lithium-Sulfur Batteries.
Adv Mater. 2024 Jul;36(29):e2401263. doi: 10.1002/adma.202401263. Epub 2024 May 9.
7
Unraveling the Catalyst-Solvent Interactions in Lean-Electrolyte Sulfur Reduction Electrocatalysis for Li-S Batteries.
Angew Chem Int Ed Engl. 2022 Dec 19;61(51):e202213863. doi: 10.1002/anie.202213863. Epub 2022 Nov 22.
8
Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
Acc Chem Res. 2017 Nov 21;50(11):2653-2660. doi: 10.1021/acs.accounts.7b00460. Epub 2017 Nov 7.
9
New High Donor Electrolyte for Lithium-Sulfur Batteries.
Adv Mater. 2020 Dec;32(52):e2005022. doi: 10.1002/adma.202005022. Epub 2020 Nov 13.
10
Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
Acc Chem Res. 2023 Oct 3;56(19):2700-2712. doi: 10.1021/acs.accounts.3c00400. Epub 2023 Sep 20.

引用本文的文献

2
Microenvironment Engineering Enables Broad Strategies for Lithium-Sulfur Batteries.
Adv Sci (Weinh). 2025 Aug;12(32):e05685. doi: 10.1002/advs.202505685. Epub 2025 Jul 11.
4
Review on MXenes-Based Electrocatalysts for High-Energy-Density Lithium-Sulfur Batteries.
Nanomicro Lett. 2025 Apr 10;17(1):209. doi: 10.1007/s40820-025-01726-z.
5
Tailoring Cathode-Electrolyte Interface for High-Power and Stable Lithium-Sulfur Batteries.
Nanomicro Lett. 2024 Dec 4;17(1):85. doi: 10.1007/s40820-024-01573-4.
6
Mastering Surface Sulfidation of MnP-MnO Heterostructure to Facilitate Efficient Polysulfide Conversion in Li─S Batteries.
Adv Sci (Weinh). 2024 Aug;11(32):e2403391. doi: 10.1002/advs.202403391. Epub 2024 Jun 24.
7
Pristine MOF Materials for Separator Application in Lithium-Sulfur Battery.
Adv Sci (Weinh). 2024 Aug;11(31):e2404834. doi: 10.1002/advs.202404834. Epub 2024 Jun 18.
8
Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions.
Nat Commun. 2024 Apr 15;15(1):3231. doi: 10.1038/s41467-024-47565-1.
9
10
From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments.
Nanomicro Lett. 2023 Nov 20;16(1):24. doi: 10.1007/s40820-023-01234-y.

本文引用的文献

3
Sulfide-Based All-Solid-State Lithium-Sulfur Batteries: Challenges and Perspectives.
Nanomicro Lett. 2023 Mar 28;15(1):75. doi: 10.1007/s40820-023-01053-1.
4
All-Solid-State Thin-Film Lithium-Sulfur Batteries.
Nanomicro Lett. 2023 Mar 27;15(1):73. doi: 10.1007/s40820-023-01064-y.
6
Carbon microspheres built of LaO quantum dots-implanted nanorods: Superb hosts with ultra-long LiS-catalysis durability.
J Colloid Interface Sci. 2023 Jun 15;640:320-328. doi: 10.1016/j.jcis.2023.02.127. Epub 2023 Feb 28.
7
Carbon-Nitride-Based Materials for Advanced Lithium-Sulfur Batteries.
Nanomicro Lett. 2022 Nov 14;14(1):222. doi: 10.1007/s40820-022-00954-x.
8
Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li-S Batteries.
ACS Nano. 2022 Oct 25;16(10):15734-15759. doi: 10.1021/acsnano.2c08581. Epub 2022 Oct 12.
9
Cu-Mo Bimetal Modulated Multifunctional Carbon Nanofibers Promoting the Polysulfides Conversion for High-Sulfur-Loading Lithium-Sulfur Batteries.
ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45688-45696. doi: 10.1021/acsami.2c13012. Epub 2022 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验