Friedman Daniel Ari, Tschantz Alec, Ramstead Maxwell J D, Friston Karl, Constant Axel
Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States.
Active Inference Lab, University of California, Davis, Davis, CA, United States.
Front Behav Neurosci. 2021 Jun 24;15:647732. doi: 10.3389/fnbeh.2021.647732. eCollection 2021.
In this paper, we introduce an active inference model of ant colony foraging behavior, and implement the model in a series of experiments. Active inference is a multiscale approach to behavioral modeling that is being applied across settings in theoretical biology and ethology. The ant colony is a classic case system in the function of distributed systems in terms of stigmergic decision-making and information sharing. Here we specify and simulate a Markov decision process (MDP) model for ant colony foraging. We investigate a well-known paradigm from laboratory ant colony behavioral experiments, the alternating T-maze paradigm, to illustrate the ability of the model to recover basic colony phenomena such as trail formation after food location discovery. We conclude by outlining how the active inference ant colony foraging behavioral model can be extended and situated within a nested multiscale framework and systems approaches to biology more generally.
在本文中,我们介绍了一种蚁群觅食行为的主动推理模型,并在一系列实验中实现了该模型。主动推理是一种多尺度行为建模方法,正在理论生物学和动物行为学的各种场景中得到应用。就stigmergic决策和信息共享而言,蚁群是分布式系统功能中的一个经典案例系统。在这里,我们指定并模拟了一个用于蚁群觅食的马尔可夫决策过程(MDP)模型。我们研究了实验室蚁群行为实验中一个著名的范式——交替T型迷宫范式,以说明该模型恢复基本蚁群现象(如发现食物位置后形成踪迹)的能力。我们通过概述主动推理蚁群觅食行为模型如何更广泛地在嵌套多尺度框架和生物学系统方法中进行扩展和定位来得出结论。