Weber Derek, Nasim Mehwish, Mitchell Lewis, Falzon Lucia
School of Computer Science, University of Adelaide, Adelaide, SA Australia.
Defence Science and Technology Group, Adelaide, SA Australia.
Soc Netw Anal Min. 2021;11(1):62. doi: 10.1007/s13278-021-00770-y. Epub 2021 Jul 5.
To study the effects of online social network (OSN) activity on real-world offline events, researchers need access to OSN data, the reliability of which has particular implications for social network analysis. This relates not only to the completeness of any collected dataset, but also to constructing meaningful social and information networks from them. In this multidisciplinary study, we consider the question of constructing traditional social networks from OSN data and then present several measurement case studies showing how variations in collected OSN data affect social network analyses. To this end, we developed a systematic comparison methodology, which we applied to five pairs of parallel datasets collected from Twitter in four case studies. We found considerable differences in several of the datasets collected with different tools and that these variations significantly alter the results of subsequent analyses. Our results lead to a set of guidelines for researchers planning to collect online data streams to infer social networks.
为了研究在线社交网络(OSN)活动对现实世界线下事件的影响,研究人员需要获取OSN数据,而这些数据的可靠性对社交网络分析具有特殊意义。这不仅涉及任何收集到的数据集的完整性,还涉及从这些数据集中构建有意义的社交和信息网络。在这项多学科研究中,我们考虑了从OSN数据构建传统社交网络的问题,然后展示了几个测量案例研究,说明收集到的OSN数据的变化如何影响社交网络分析。为此,我们开发了一种系统比较方法,并将其应用于四个案例研究中从推特收集的五对平行数据集。我们发现,使用不同工具收集的几个数据集中存在相当大的差异,并且这些变化显著改变了后续分析的结果。我们的结果为计划收集在线数据流以推断社交网络的研究人员提供了一套指导方针。