Suppr超能文献

一种新型乳腺癌转录因子预后指数的鉴定

Identification of a Novel Transcription Factor Prognostic Index for Breast Cancer.

作者信息

Liu Junhao, Liu Zexuan, Zhou Yangying, Zeng Manting, Pan Sanshui, Liu Huan, Liu Qiong, Zhu Hong

机构信息

Department of Oncology, Xiangya Hospital, Central South University, Changsa, China.

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States.

出版信息

Front Oncol. 2021 Jun 24;11:666505. doi: 10.3389/fonc.2021.666505. eCollection 2021.

Abstract

Transcription factors (TFs) are the mainstay of cancer and have a widely reported influence on the initiation, progression, invasion, metastasis, and therapy resistance of cancer. However, the prognostic values of TFs in breast cancer (BC) remained unknown. In this study, comprehensive bioinformatics analysis was conducted with data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We constructed the co-expression network of all TFs and linked it to clinicopathological data. Differentially expressed TFs were obtained from BC RNA-seq data in TCGA database. The prognostic TFs used to construct the risk model for progression free interval (PFI) were identified by Cox regression analyses, and the PFI was analyzed by the Kaplan-Meier method. A receiver operating characteristic (ROC) curve and clinical variables stratification analysis were used to detect the accuracy of the prognostic model. Additionally, we performed functional enrichment analysis by analyzing the differential expressed gene between high-risk and low-risk group. A total of nine co-expression modules were identified. The prognostic index based on 4 TFs (NR3C2, ZNF652, EGR3, and ARNT2) indicated that the PFI was significantly shorter in the high-risk group than their low-risk counterpart (p < 0.001). The ROC curve for PFI exhibited acceptable predictive accuracy, with an area under the curve value of 0.705 and 0.730. In the stratification analyses, the risk score index is an independent prognostic variable for PFI. Functional enrichment analyses showed that high-risk group was positively correlated with mTORC1 signaling pathway. In conclusion, the TF-related signature for PFI constructed in this study can independently predict the prognosis of BC patients and provide a deeper understanding of the potential biological mechanism of TFs in BC.

摘要

转录因子(TFs)是癌症的关键要素,并且对癌症的发生、发展、侵袭、转移及治疗抵抗有着广泛报道的影响。然而,TFs在乳腺癌(BC)中的预后价值仍不明确。在本研究中,利用来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)的数据进行了全面的生物信息学分析。我们构建了所有TFs的共表达网络,并将其与临床病理数据相关联。从TCGA数据库中的BC RNA测序数据获得差异表达的TFs。通过Cox回归分析确定用于构建无进展生存期(PFI)风险模型的预后TFs,并采用Kaplan-Meier法分析PFI。使用受试者工作特征(ROC)曲线和临床变量分层分析来检测预后模型的准确性。此外,我们通过分析高风险组和低风险组之间的差异表达基因进行功能富集分析。共鉴定出9个共表达模块。基于4个TFs(NR3C2、ZNF652、EGR3和ARNT2)的预后指数表明,高风险组的PFI明显短于低风险组(p < 0.001)。PFI的ROC曲线显示出可接受的预测准确性,曲线下面积值分别为0.705和0.730。在分层分析中,风险评分指数是PFI的独立预后变量。功能富集分析表明,高风险组与mTORC1信号通路呈正相关。总之,本研究构建的与PFI相关的TF特征可独立预测BC患者的预后,并为深入了解TFs在BC中的潜在生物学机制提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d728/8264286/d5fcdc7ad94b/fonc-11-666505-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验