Malkin M, Safonov K
Mathematical Center "Mathematics of Future Technologies," Lobachevsky State University, 23 Prospekt Gagarina, 603022 Nizhny Novgorod, Russia.
Chaos. 2021 Apr;31(4):043107. doi: 10.1063/5.0040164.
This paper deals with one-dimensional factor maps for the geometric model of Lorenz-type attractors in the form of two-parameter family of Lorenz maps on the interval I=[-1,1] given by T(x)=(-1+c⋅|x|)⋅sign(x). This is the normal form for splitting the homoclinic loop with additional degeneracy in flows with symmetry that have a saddle equilibrium with a one-dimensional unstable manifold. Due to L. P. Shilnikov' results, such a bifurcation (under certain conditions) corresponds to the birth of the Lorenz attractor. We indicate those regions in the parameter plane where the topological entropy depends monotonically on the parameter c, as well as those for which the monotonicity does not take place. Also, we indicate the corresponding bifurcations for the Lorenz attractors.
本文研究区间(I = [-1,1])上由(T(x)=(-1 + c\cdot|x|)\cdot sign(x))给出的洛伦兹映射双参数族形式的洛伦兹型吸引子几何模型的一维因子映射。这是在具有对称的流中,对于具有一维不稳定流形的鞍点平衡且具有额外退化的同宿环分裂的范式。根据L.P.希利尼科夫的结果,这种分岔(在某些条件下)对应于洛伦兹吸引子的诞生。我们指出参数平面中拓扑熵单调依赖于参数(c)的区域,以及那些不存在单调性的区域。此外,我们还指出了洛伦兹吸引子的相应分岔。