Boer M P, Kooi B W, Kooijman S A
Department of Theoretical Biology, Faculty of Biology, Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
Math Biosci. 2001 Feb;169(2):109-28. doi: 10.1016/s0025-5564(00)00058-4.
The asymptotic behaviour of a model of a tri-trophic food chain in the chemostat is analysed in detail. The Monod growth model is used for all trophic levels, yielding a non-linear dynamical system of four ordinary differential equations. Mass conservation makes it possible to reduce the dimension by 1 for the study of the asymptotic dynamic behaviour. The intersections of the orbits with a Poincaré plane, after the transient has died out, yield a two-dimensional Poincaré next-return map. When chaotic behaviour occurs, all image points of this next-return map appear to lie close to a single curve in the intersection plane. This motivated the study of a one-dimensional bi-modal, non-invertible map of which the graph resembles this curve. We will show that the bifurcation structure of the food chain model can be understood in terms of the local and global bifurcations of this one-dimensional map. Homoclinic and heteroclinic connecting orbits and their global bifurcations are discussed also by relating them to their counterparts for a two-dimensional map which is invertible like the next-return map. In the global bifurcations two homoclinic or two heteroclinic orbits collide and disappear. In the food chain model two attractors coexist; a stable limit cycle where the top-predator is absent and an interior attractor. In addition there is a saddle cycle. The stable manifold of this limit cycle forms the basin boundary of the interior attractor. We will show that this boundary has a complicated structure when there are heteroclinic orbits from a saddle equilibrium to this saddle limit cycle. A homoclinic bifurcation to a saddle limit cycle will be associated with a boundary crisis where the chaotic attractor disappears suddenly when a bifurcation parameter is varied. Thus, similar to a tangent local bifurcation for equilibria or limit cycles, this homoclinic global bifurcation marks a region in the parameter space where the top-predator goes extinct. The 'Paradox of Enrichment' says that increasing the concentration of nutrient input can cause destabilization of the otherwise stable interior equilibrium of a bi-trophic food chain. For a tri-trophic food chain enrichment of the environment can even lead to extinction of the highest trophic level.
详细分析了恒化器中三营养级食物链模型的渐近行为。所有营养级均采用莫诺德生长模型,得到一个由四个常微分方程组成的非线性动力系统。质量守恒使得在研究渐近动态行为时可以将维度降低1。在瞬态消失后,轨道与庞加莱平面的交点产生一个二维庞加莱次返回映射。当出现混沌行为时,这个次返回映射的所有像点似乎都位于相交平面中的一条单一曲线上。这激发了对一个一维双模态、不可逆映射的研究,其图形类似于这条曲线。我们将表明,食物链模型的分岔结构可以根据这个一维映射的局部和全局分岔来理解。还通过将同宿和异宿连接轨道及其全局分岔与二维映射(如次返回映射一样可逆)的对应轨道相关联来进行讨论。在全局分岔中,两个同宿或两个异宿轨道碰撞并消失。在食物链模型中,两个吸引子共存;一个是没有顶级捕食者的稳定极限环和一个内部吸引子。此外,还有一个鞍点周期。这个极限环的稳定流形形成了内部吸引子的盆地边界。我们将表明,当存在从鞍点平衡到这个鞍点极限环的异宿轨道时,这个边界具有复杂的结构。鞍点极限环的同宿分岔将与边界危机相关联,即当分岔参数变化时,混沌吸引子突然消失。因此,类似于平衡点或极限环的切线局部分岔,这种同宿全局分岔标志着参数空间中顶级捕食者灭绝的区域。“富集悖论”指出,增加营养输入浓度会导致双营养级食物链原本稳定的内部平衡失稳。对于三营养级食物链,环境富集甚至可能导致最高营养级灭绝。