Suppr超能文献

通过特权信息学习算法改善基于磁共振成像的高血压患者脑结构变化分析。

Improving MRI-based analysis of brain structural changes in patients with hypertension via a privileged information learning algorithm.

作者信息

Peng Bo, Yu Xinying, Ma Xinwei, Xue Zeyu, Wang Jingyu, Cai Zenglin, Pang Chunying, Zhu Jianbing, Dai Yakang

机构信息

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Suzhou Key Laboratory of Medical and Health Information Technology, Suzhou, China; Jinan Guoke Medical Engineering Technology Development Co., LTD, Jinan, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.

出版信息

Methods. 2022 Jun;202:103-109. doi: 10.1016/j.ymeth.2021.07.004. Epub 2021 Jul 10.

Abstract

Hypertension can lead to changes in the brain structure and function, and different blood pressure levels (2017ACC/AHA) have different effects on brain structure. It is important to analyze these changes by machine learning methods, and various characteristics can provide rich information for the analysis of these changes. However, multiple feature extraction involves complex data processing. How to make a single feature achieve the same diagnosis effect as multiple features do is worth of study. Kernel ridge regression (KRR) is a kind of machine learning method, which shows faster learning speed and generalization ability in classification tasks. In order to knowledge transfer, we use privileged information (PI) to transfer information of multiple types of feature to single feature. This allows only one feature type to be used during the test stage. In the process of feature fusion, we need to consider all the samples' attribution making the classifier better. In this work, we propose a multi-kernel KRR+ framework based on self-paced learning to analyze the changes of the brain structure in patients with different blood pressure levels. Specifically, one kind of a feature is taken as main feature, and other features are input into the multi-kernel KRR as PI. These two inputs are fed into the final KRR classifier together. In addition, a self-paced learning method is introduced into sample selecting to avoid training the classifier using samples with a large loss value firstly, which improves the generalization performance of the classifier. Experimental results show that the proposed method can make full use of the information of various features and achieve better classification performance. This shows self-paced learning based KRR can help analyze brain structure of patients with different blood pressure levels. The discriminative features may help clinicians to make judgments of hypertension degrees on brain MRI images.

摘要

高血压可导致脑结构和功能的改变,并且不同的血压水平(2017年美国心脏病学会/美国心脏协会)对脑结构有不同影响。通过机器学习方法分析这些变化很重要,各种特征可为这些变化的分析提供丰富信息。然而,多特征提取涉及复杂的数据处理。如何使单个特征达到与多个特征相同的诊断效果值得研究。核岭回归(KRR)是一种机器学习方法,在分类任务中显示出更快的学习速度和泛化能力。为了进行知识迁移,我们使用特权信息(PI)将多种类型特征的信息转移到单个特征上。这使得在测试阶段仅使用一种特征类型。在特征融合过程中,我们需要考虑所有样本的属性以使分类器更好。在这项工作中,我们提出了一种基于自步学习的多核KRR +框架,以分析不同血压水平患者的脑结构变化。具体而言,将一种特征作为主要特征,而其他特征作为PI输入到多核KRR中。这两个输入一起输入到最终的KRR分类器中。此外,在样本选择中引入了自步学习方法,以避免首先使用损失值大的样本训练分类器,从而提高了分类器的泛化性能。实验结果表明,所提出的方法可以充分利用各种特征的信息并实现更好的分类性能。这表明基于自步学习的KRR有助于分析不同血压水平患者的脑结构。这些判别特征可能有助于临床医生在脑部MRI图像上对高血压程度做出判断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验