Suppr超能文献

评估 4 种预测泌乳后期奶牛乳房炎感染状态的算法。

Evaluation of 4 predictive algorithms for intramammary infection status in late-lactation cows.

机构信息

Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales 2570, Australia; Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108.

DeLaval Manufacturing, Waunakee, WI 53597.

出版信息

J Dairy Sci. 2021 Oct;104(10):11035-11046. doi: 10.3168/jds.2021-20504. Epub 2021 Jul 10.

Abstract

The objective of this observational study was to compare 4 cow-level algorithms to predict cow-level intramammary infection (IMI) status (culture and MALDI-TOF) in late-lactation US dairy cows using standard measures of test performance. Secondary objectives were to estimate the likely effect of each algorithm, if used to guide selective dry cow therapy (SDCT), on dry cow antibiotic use in US dairy herds, and to investigate the importance of including clinical mastitis criteria in algorithm-guided SDCT. Cows (n = 1,594) from 56 US dairy herds were recruited as part of a previously published cross-sectional study of bedding management and IMI in late-lactation cows. Each herd was visited twice for sampling. At each farm visit, aseptic quarter-milk samples were collected from 20 cows approaching dry-off (>180 d pregnant), which were cultured using standard bacteriological methods and MALDI-TOF for identification of isolates. Quarter-level culture results were used to establish cow-level IMI status, which was considered the reference test in this study. Clinical mastitis records and Dairy Herd Improvement Association test-day somatic cell count data were extracted from herd records and used to perform cow-level risk assessments (low vs. high risk) using 4 algorithms that have been proposed for SDCT in New Zealand, the Netherlands, United Kingdom, and the United States. Agreement between aerobic culture (reference test; IMI vs. no-IMI) and algorithm status (high vs. low risk) was described using Cohen's kappa, test sensitivity, specificity, negative predictive value, and positive predictive value. The proportion of cows classified as high risk among the 4 algorithms ranged from 0.31 to 0.63, indicating that these approaches to SDCT could reduce antibiotic use at dry-off by 37 to 69% in the average US herd. All algorithms had poor agreement with IMI status, with kappa values ranging from 0.05 to 0.13. Sensitivity varied by pathogen, with higher values observed when detecting IMI caused by Streptococcus uberis, Streptococcus dysgalactiae, Staphylococcus aureus, and Lactococcus lactis. Negative predictive values were high for major pathogens among all algorithms (≥0.87), which may explain why algorithm-guided SDCT programs have been successfully implemented in field trials, despite poor agreement with overall IMI status. Removal of clinical mastitis criteria for each algorithm had little effect on the algorithm classification of cows, indicating that algorithms based on SCC alone may have similar performance to those based on SCC and clinical mastitis criteria. We recommend that producers implementing algorithm-guided SDCT use algorithm criteria that matches their relative aspirations for reducing antibiotic use (high specificity, positive predictive value) or minimizing untreated IMI at dry-off (high sensitivity, negative predictive value).

摘要

本观察性研究的目的是使用标准测试性能指标,比较 4 种奶牛级别的算法,以预测泌乳后期美国奶牛的奶牛级别的乳腺炎感染(MALDI-TOF)状态(培养和 MALDI-TOF)。次要目标是估计如果使用每种算法来指导选择性干奶牛治疗(SDCT),对美国奶牛群中干奶牛抗生素使用的可能影响,并研究在算法指导的 SDCT 中包含临床乳腺炎标准的重要性。从 56 个美国奶牛场招募了 1594 头奶牛,作为泌乳后期奶牛垫料管理和乳腺炎的先前发表的横断面研究的一部分。每个牧场都进行了两次采样访问。在每次农场访问时,从 20 头接近干奶期(>180 天怀孕)的奶牛中采集无菌乳房 quarters 奶样,使用标准细菌学方法和 MALDI-TOF 进行分离物鉴定。使用 quarter 级培养结果确定奶牛级别的乳腺炎感染状态,这在本研究中被认为是参考测试。从牛群记录中提取临床乳腺炎记录和奶牛改良协会测试日体细胞计数数据,并使用已在新西兰、荷兰、英国和美国提出的 4 种用于 SDCT 的算法对奶牛进行风险评估(低风险与高风险)。使用 Cohen 的 kappa、测试灵敏度、特异性、阴性预测值和阳性预测值描述有氧培养(参考测试;乳腺炎感染与无乳腺炎感染)和算法状态(高风险与低风险)之间的一致性。4 种算法中高风险奶牛的比例范围为 0.31 至 0.63,表明这些 SDCT 方法可将美国普通奶牛群中干奶期的抗生素使用减少 37%至 69%。所有算法与乳腺炎感染状态的一致性都很差,kappa 值范围为 0.05 至 0.13。敏感性因病原体而异,检测到由停乳链球菌、无乳链球菌、金黄色葡萄球菌和乳酸乳球菌引起的乳腺炎感染时,敏感性值较高。所有算法的主要病原体的阴性预测值都很高(≥0.87),这可能解释了为什么尽管与总体乳腺炎感染状态的一致性较差,但算法指导的 SDCT 计划已在现场试验中成功实施。删除每种算法的临床乳腺炎标准对奶牛的算法分类几乎没有影响,表明基于 SCC 的算法可能具有与基于 SCC 和临床乳腺炎标准的算法相似的性能。我们建议实施算法指导的 SDCT 的生产者使用与他们减少抗生素使用的相对愿望相匹配的算法标准(高特异性、阳性预测值),或者最大限度地减少干奶期未治疗的乳腺炎感染(高灵敏度、阴性预测值)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验